www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algorithmen und Datenstrukturen" - Master-Theorem
Master-Theorem < Algor.+Datenstr. < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Master-Theorem: Frage
Status: (Frage) beantwortet Status 
Datum: 16:37 Mo 11.07.2005
Autor: michael7

Hallo,

Ist das Master-Theorem fuer die folgenden Rekurrenzen anwendbar?


[mm]T\left(n\right) = 53T\left(\bruch{n}{4}\right) + 2n^3[/mm]

[mm]T\left(n\right) = 36T\left(\bruch{n}{6}\right) + n\log n + n[/mm]


Kann ich bei der ersten Aufgabe folgendes machen, um zu zeigen, dass [m]af\left(\bruch{n}{b}\right) \le cf\left(n\right)[/m] fuer ein c < 1 gilt?


[mm] 53f\left(\bruch{n}{4}\right) \le cf\left(n\right) \gdw 53*2*\left(\bruch{n}{4}\right)^3 \le cf\left(n\right) = c*2*n^3 \gdw 53*\left(\bruch{n}{4}\right)^3 \le cn^3 \gdw \bruch{53}{64}n^3 \le cn^3 [/mm] und das gilt [mm]\forall \bruch{53}{64} \le c < 1[/mm].


Beim zweiten weiss ich nicht wie ich [mm]n*\log n + n[/mm] behandeln soll.

Irgendwelche Tipps?

Danke, Michael



        
Bezug
Master-Theorem: Antwort
Status: (Antwort) fertig Status 
Datum: 00:20 Mi 13.07.2005
Autor: Karl_Pech

Hallo Michael,


> Ist das Master-Theorem fuer die folgenden Rekurrenzen
> anwendbar?


[ok]


>
> [mm]T\left(n\right) = 53T\left(\bruch{n}{4}\right) + 2n^3[/mm]
>  


Ich habe mir deine Rechnung für die erste Aufgabe angeschaut, und muß sagen, daß ich genauso vorgegangen wäre. Du hast dich also für den 3ten Fall des Theorems entschieden:


Wenn [mm] $f\left(n\right) [/mm] = [mm] \Omega\left(n^{\log _b a + \epsilon}\right)$ [/mm] für eine Konstante [mm] $\epsilon [/mm] > 0$ erfüllt ist und wenn die Bedingung, die Du angegeben hast, gilt, dann ist [mm] $T\left(n\right) [/mm] = [mm] \Theta\left(f\left(n\right)\right)$. [/mm]


[ok]


> [mm]T\left(n\right) = 36T\left(\bruch{n}{6}\right) + n\log n + n[/mm]
>
> Beim zweiten weiss ich nicht wie ich [mm]n*\log n + n[/mm] behandeln
> soll.


Ich habe hier an den ersten Fall des Master-Theorems gedacht:


Wenn [m]\exists \epsilon > 0: f\left( n \right) = \mathcal{O}\left( {n^{\log _b a - \varepsilon } } \right) \Rightarrow T\left(n\right) = \Theta\left(n^{\log _b a}\right)[/m].


Ich denke, wir können mit dieser Nebenrechnung beginnen:


[m]n\log n + n \leqslant n\log n + n\log n \Rightarrow n \leqslant n\log n \Rightarrow 1 \leqslant \log n \Rightarrow 2 \leqslant n[/m]


Und jetzt rufen wir uns nochmal die Definition der [mm] $\mathcal{O}\texttt{-Notation}$ [/mm] in Erinnerung:


[m]a\left( n \right) = \mathcal{O}\left( {b\left( n \right)} \right): \Leftrightarrow \exists c \in \mathbb{R}_{ > 0} \exists n_0 \in \mathbb{N}\,\forall n \geqslant n_0 :\left| {a\left( n \right)} \right| \leqslant c\left| {b\left( n \right)} \right|[/m]


Unser [mm] $n_0$ [/mm] haben wir oben bereits gefunden: [mm] $n_0 [/mm] = 2$. Was ist [mm] $c\!$? [/mm] Wir setzen einfach $c = [mm] 2\!$ [/mm] und erhalten:


[m]n\log n + n = \mathcal{O}\left( {n\log n} \right): \Leftrightarrow \forall n \geqslant \underbrace 2_{n_0 }:\left| {n\log n + n} \right| \leqslant \underbrace 2_c\left| {n\log n} \right|[/m]


Was ist hier [mm] $\log [/mm] _b a$? Nun, [mm] $\log [/mm] _6 36 = 2$. Jetzt müssen wir nur noch das [mm] $\epsilon$ [/mm] bestimmen. Wir wissen, daß der Logarithmus langsamer als jedes Polynom wächst. Er wächst also auch langsamer als die Wurzelfunktion. Es gilt:


[m]\mathcal{O}\left( {n\log n} \right) \subset \mathcal{O}\left( {n\sqrt n } \right) = \mathcal{O}\left( {n^{1.5} } \right)[/m]


Wenn wir also beispielsweise [mm] $\epsilon [/mm] = 0.5$ setzen, müßten wir gerade das gewünschte obige Resultat (also den ersten Fall des M.T.) erhalten.



Viele Grüße
Karl



Bezug
                
Bezug
Master-Theorem: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:11 Fr 15.07.2005
Autor: michael7

Danke fuer Deine Hilfe! Es scheint wohl wirklich zu gehen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algorithmen und Datenstrukturen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de