www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Mathematik" - Matching und Kreise
Matching und Kreise < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matching und Kreise: Verständnisfrage
Status: (Frage) beantwortet Status 
Datum: 01:55 So 20.02.2011
Autor: hilado

Aufgabe
Die symmetrische Differenz [mm] M_{1} \Delta M_{2} [/mm] = [mm] (M_{1} [/mm] \ [mm] M_{2}) \cup (M_{2} [/mm] \ [mm] M_{1}) [/mm] zweier verschiedener perfekter Matchings eines Graphen enthält mindestens einen Kreis.

Ich weiß leider nicht, wie man darauf kommt, dass man durch die symmetrische Differenz zweier verschiedener perfekter Matchings zu einem Kreis kommt. Kann man das irgendwie genauer erläutern ?

        
Bezug
Matching und Kreise: Antwort
Status: (Antwort) fertig Status 
Datum: 02:26 So 20.02.2011
Autor: felixf

Moin!

> Die symmetrische Differenz [mm]M_{1} \Delta M_{2}[/mm] = [mm](M_{1}[/mm] \
> [mm]M_{2}) \cup (M_{2}[/mm] \ [mm]M_{1})[/mm] zweier verschiedener perfekter
> Matchings eines Graphen enthält mindestens einen Kreis.
>
>  Ich weiß leider nicht, wie man darauf kommt, dass man
> durch die symmetrische Differenz zweier verschiedener
> perfekter Matchings zu einem Kreis kommt. Kann man das
> irgendwie genauer erläutern ?

Da die Matchings verschieden sind gibt es mind. eine Kante [mm] $K_0$ [/mm] in der symmetrischen Differenz. Sei [mm] $P_0$ [/mm] ein Eckpunkt dieser Kante. Angenommen, die Kante [mm] $K_0$ [/mm] liegt in [mm] $M_1$. [/mm] Sei [mm] $P_1$ [/mm] jetzt der zweite Punkt von [mm] $M_1$. [/mm] Nun gibt es genau eine Kante [mm] $K_1$ [/mm] in [mm] $M_2$, [/mm] welche mit [mm] $P_1$ [/mm] inzidiert, und [mm] $K_1$ [/mm] liegt nicht in [mm] $M_1$ [/mm] (warum?). Damit liegt [mm] $K_1$ [/mm] in [mm] $M_1 \Delta M_2$. [/mm] Sei nun [mm] $P_2$ [/mm] der zweite Punkt von [mm] $K_1$, [/mm] und es gibt genau eine Kante [mm] $K_2$ [/mm] in [mm] $M_1$, [/mm] die mit [mm] $P_2$ [/mm] inzidiert. Kann diese Kante in [mm] $M_2$ [/mm] liegen? Faellt dir was auf?

LG Felix


Bezug
                
Bezug
Matching und Kreise: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:26 So 20.02.2011
Autor: hilado

Danke. Das hab ich jetzt verstanden :)

Bezug
        
Bezug
Matching und Kreise: Definition: Perfect Matching
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:51 So 20.02.2011
Autor: Al-Chwarizmi


> Die symmetrische Differenz [mm]M_{1} \Delta M_{2}[/mm] = [mm](M_{1}[/mm] \
> [mm]M_{2}) \cup (M_{2}[/mm] \ [mm]M_{1})[/mm] zweier verschiedener perfekter
> Matchings eines Graphen enthält mindestens einen Kreis.
>  Ich weiß leider nicht, wie man darauf kommt, dass man
> durch die symmetrische Differenz zweier verschiedener
> perfekter Matchings zu einem Kreis kommt. Kann man das
> irgendwie genauer erläutern ?


Guten Tag allerseits !

Graphentheorie hat mich früher einmal sehr beschäftigt -
als Gymnasiast meinte ich einmal, einen Beweis für den
Vierfarbensatz zu haben (damals das noch ungelöste
"Vierfarbenproblem") ...
Den Ausdruck "Matching" bzw. "perfektes Matching" habe
ich allerdings bisher nie gehört. Für alle denen es ebenso
ergeht, hier die entsprechenden Wiki-Links auf  
[]englisch: Matching oder  []deutsch: Paarung .

LG    Al

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de