www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Matheaufgabe
Matheaufgabe < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matheaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:32 Do 26.06.2003
Autor: Ana

also, ein konzentrat von 9mg baut jeden tag 35% ab. und dann, in wieviel tagen ist 1/2, 1/3, 1/100 der menge abgebaut?
kann man dann rechnen, 9mg* [mm] ((1-35/100)^n [/mm]
-> 1/2= 0,65
lg 1/2=lg0,65 /:lg0,65
-> 1,6... und bei 1/3, 1/100 ebenso.
geht das?


        
Bezug
Matheaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:11 Do 26.06.2003
Autor: Marc

Hallo Ana,

willkommen im MatheRaum :-)!

Deine allgemeine Wachstumsformel (naja, ist wohl eher eine Zerfallsformel) ist richtig aufgestellt:

[mm2]K_n = 9mg \cdot \left( 1- \frac{35}{100} \right) ^n [/mm2]

(Der Wachstumsfaktor/Zerfallsfaktor [mm]q[/mm] ist also gleich [mm]q=1-\frac{35}{100}[/mm], der Anfangsbestand [mm]K_0[/mm] beträgt [mm]K_{0}=9mg[/mm] ; in die allgemeine Wachstumsformel [mm]K_n=K_0 \cdot q^n[/mm] eingesetzt ergibt sich genau deine Formel.)

Jetzt ist die Frage, wann die Hälfte der Menge (also die Hälfte der Anfangsmenge [mm]K_0[/mm]) abgebaut ist.

Zu einem bestimmten Zeitpunkt [mm]n[/mm] soll also die Hälfte der Anfangsmenge [mm]K_0 \cdot \frac{1}{2} = 9mg \cdot \frac {1}{2}= 4,5mg[/mm] vorhanden sein; die Frage ist also, für welches [mm]n[/mm] ist [mm]K_n=4,5mg[/mm]?

Das kann man bequem deine Formel "fragen", indem man sie mit der gewünschten Menge gleichsetzt und nach n auflöst:

[mm]K_n = 9mg \cdot \left( 1- \frac{35}{100} \right) ^n [/mm]
[mm]\Leftrightarrow 4,5mg = 9mg \cdot \left( 1- \frac{35}{100} \right) ^n [/mm]
[mm]\Leftrightarrow \frac{1}{2} = \left( 1- \frac{35}{100} \right) ^n [/mm]
[mm]\Leftrightarrow \log \frac{1}{2} = \log \left( 1- \frac{35}{100} \right) ^n [/mm]
[mm]\Leftrightarrow \log \frac{1}{2} = n \cdot \log \left( 1- \frac{35}{100} \right) [/mm]
[mm]\Leftrightarrow \log \frac{1}{2} = n \cdot \log \frac{65}{100} [/mm]
[mm]\Leftrightarrow \frac{\log \frac{1}{2}}{\log \frac{65}{100}} = n[/mm]

Das kann man jetzt schon mit dem Taschenrechner ausrechnen, aber ich wende mal bis zum bitteren Ende die Logarithmusgesetze an :-):

[mm]\Leftrightarrow \frac{\log 1 -\log 2}{\log 65 - \log 100} = n[/mm]
[mm]\Leftrightarrow \frac{-\log 2}{\log 65 - \log 10^2} = n[/mm]
[mm]\Leftrightarrow \frac{-\log 2}{\log 65 - 2 \cdot \log 10} = n[/mm]
[mm]\Leftrightarrow \frac{-\log 2}{\log 65 - 2 \cdot 1} = n[/mm]
[mm]\Leftrightarrow \frac{-\log 2}{\log 65 - 2} = n[/mm]
[mm]\Leftrightarrow n = 1,61[/mm]

Nach ca. 1,61 Tagen ist also nur noch die Hälfte des Konzentrats vorhanden.
Kommst du nun mit den anderen Fragen klar?

Wenn nicht, melde dich doch bitte wieder (obwohl ich dir heute nicht mehr weiter helfen kann, aber sicher jemand anderes hier im MatheRaum :-)

Viel Erfolg,
Marc


Bezug
                
Bezug
Matheaufgabe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:54 Do 26.06.2003
Autor: Ana

Erstmal danke für den willkommensgruß :) und wow... sowas versteh ich unter ner schnellen und gut erklärten antwort! hätt ich nu nich erwartet. aber hab, wie´s ausschaut, alles richtig...vielen lieben dank!!
hab auch keine fragen mehr ;)
Bis denn erstma ..:)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de