www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Känguru" - Mathematikwettbewerb von zfm
Mathematikwettbewerb von zfm < Känguru < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Känguru"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mathematikwettbewerb von zfm: Lösungshilfe für Probeaufgaben
Status: (Frage) überfällig Status 
Datum: 22:58 Sa 13.01.2007
Autor: ThomasMentzel

Hallo,

erst einmal Entschuldigung, dass meine Anfrage sehr kurzfristig ist und recht umfangreich. Ich habe über die Ferien eine Probearbeit zum Mathematikwettbewerb des Zentrum für Mathematik aufbekommen und habe bei 3 Aufgaben Probleme.

Aufgabe
(Aufgaben als PDF unter: []http://www.z-f-m.de/z-f-m.de/getFile.php?information=281&file=404

oder

[]http://www.z-f-m.de/z-f-m.de/index.php?target=projekte/dummy.php&id=2)


Aufgabe: 3 a und b, 8 a und b, 6 c und 1 a

Alle anderen Aufgaben habe ich verstanden und gelöst.



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich verstehe bei diesen Aufgaben leider nicht den Ansatz und kann deshalb die Aufgaben nicht lösen. Ein Lösungsweg wäre deshalb sehr hilfreich.

Im Vorraus vielen Dank,
Thomas

        
Bezug
Mathematikwettbewerb von zfm: Ein paar Tipps
Status: (Antwort) fertig Status 
Datum: 20:55 So 14.01.2007
Autor: moudi

Hallo Thomas

Zu 8a)

Subtrahiere [mm] $\log_{10}(n!)$ [/mm] auf beiden Seiten der Gleichung. Dann formst du die linke Seite mit Hilfe der Logarithmengesetze um und beachtest, dass du rechts [mm] $1=\log_{10}(10)$ [/mm] schreiben kannst. Dann kannst du "entlogarithmieren" und du erhälst eine einfache diophantische Gleichung.

zu 6a)

Kannst du die Diagonale (hier = Strecke zwischen einem Punkt und dem übernächsten Punkt des 8 Ecks) im regelmässigen (obwohl es nirgends gesagt wird !) 8-Eck berechnen?. Dann sind die beiden gleichschenkligen Dreiecke gebildet aus
1. zwei aufeinanderfolgenden Seiten des 8.Ecks und der Diagonale
2. einer Seite des 8.Ecks und zwei sich schneidenden Diagonalen in den Endpunkten
ähnlich. Dann kannst du im 2. Dreieck die Schenkel x berechnen. Die länge des kleinen 8-Ecks ergibt sich dann als
Diagonale - 2x.

zu 1a)

Du kannst das Viereck in zu den Koordinatenachsen parallele rechtwinklige Dreiecke aufteilen. Betrachte X(x|-1) auf AB. Bestimme x so, dass das Dreieck AXD die halbe Vierecksfläche besitzt. Aus der Lösung von x, kannst du dann die Geradengleichung durch X und D bestimmen.

zu 6c)

Du kann f(f(f(n)))=27 aufteilen in
f(n)=x,
f(x)=y,
f(y)=27

Jetzt kannst du diese Gleichungen beginnend mit f(y)=27 auflösen. Entweder war y gerade und y/2=27 oder y war ungerade und y+3=27. etc.




Bezug
        
Bezug
Mathematikwettbewerb von zfm: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 So 14.01.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Känguru"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de