www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Matrix
Matrix < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:41 Fr 12.11.2010
Autor: Mandy_90

Aufgabe
Seien m,n, [mm] \in \IN [/mm] und K ein Körper.Man beweise,dass die Addition des Vielfachen einer Zeile zu einer anderen auch als Komposition von elementaren Zeilenoperationen von 1.Multiplikation einer Zeile mit einer Zahl [mm] \beta \not=0 [/mm] und 2.Addition einer Zeile zu einer anderen , geschrieben werden kann.


Hallo,

ich habe diese Aufgabe gemacht,bin mir aber unsicher ob das richtig ist.
Ich hab mir zunächst eine Matrix genommen [mm] A=\pmat{ a_{11} & ...a_{1n} \\ a_{21} & ...a_{2n} \\ a_{m1} & ...a_{mn} }, [/mm] dabei ist die zweite Zeile die k-te Zeile und die dritte die l-te Zeile.
Wenn ich jetzt Zeile k mit [mm] \beta [/mm] multiplizierehab ich [mm] \pmat{ a_{11} & ...a_{1n} \\ \beta*a_{21} & ...\beta*a_{2n} \\ a_{m1} & ...a_{mn} }, [/mm]
dann rechne ich [mm] l+\beta*k [/mm] und habe [mm] \pmat{ a_{11} & ...a_{1n} \\ \beta*a_{21} & ...\beta*a_{2n} \\ a_{m1}+\beta*a_{21} & ...a_{mn}+\beta*a_{2n} }, [/mm] schlißlich multipliziere ich die zweite Zeile mit [mm] \bruch{1}{\beta} [/mm] und habe [mm] \pmat{ a_{11} & ...a_{1n} \\ a_{21} & ...a_{2n} \\ a_{m1}+\beta*a_{21} & ...a_{mn}+\beta*a_{2n} }. [/mm]

Ist es damit schon bewiesen?

lg

        
Bezug
Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 12:06 Fr 12.11.2010
Autor: angela.h.b.


> Seien m,n, [mm]\in \IN[/mm] und K ein Körper.Man beweise,dass die
> Addition des Vielfachen einer Zeile zu einer anderen auch
> als Komposition von elementaren Zeilenoperationen von
> 1.Multiplikation einer Zeile mit einer Zahl [mm]\beta \not=0[/mm]
> und 2.Addition einer Zeile zu einer anderen , geschrieben
> werden kann.
>  
> Hallo,
>  
> ich habe diese Aufgabe gemacht,bin mir aber unsicher ob das
> richtig ist.
>  Ich hab mir zunächst eine Matrix genommen [mm]A=\pmat{ a_{11} & ...a_{1n} \\ a_{21} & ...a_{2n} \\ a_{m1} & ...a_{mn} },[/mm]
> dabei ist die zweite Zeile die k-te Zeile und die dritte
> die l-te Zeile.
>  Wenn ich jetzt Zeile k mit [mm]\beta[/mm] multiplizierehab ich
> [mm]\pmat{ a_{11} & ...a_{1n} \\ \beta*a_{21} & ...\beta*a_{2n} \\ a_{m1} & ...a_{mn} },[/mm]
>  
> dann rechne ich [mm]l+\beta*k[/mm] und habe [mm]\pmat{ a_{11} & ...a_{1n} \\ \beta*a_{21} & ...\beta*a_{2n} \\ a_{m1}+\beta*a_{21} & ...a_{mn}+\beta*a_{2n} },[/mm]
> schlißlich multipliziere ich die zweite Zeile mit
> [mm]\bruch{1}{\beta}[/mm] und habe [mm]\pmat{ a_{11} & ...a_{1n} \\ a_{21} & ...a_{2n} \\ a_{m1}+\beta*a_{21} & ...a_{mn}+\beta*a_{2n} }.[/mm]
>  
> Ist es damit schon bewiesen?

Hallo,

die Gedanken sind jedenfalls die richtigen, am Aufschrieb würde ich an Deiner Stelle noch feilen.

Du kannst z.B. nicht sagen: "Die zweite Zeile soll die k-te Zeile sein", aber ich denke, das hast Du nur wegen der Tipperei hier so gemacht.
Ansonsten schau mal in Büchern nach, wie sowas mit "k-ter Zeile" aufgeschrieben werden kann.

Dann denke ich, daß Ihr für die elementaren Zeilenumformungen Bezeichnungen eingeführt habt, welche ich hier auch verwenden würde.

Gruß v. Angela




>  
> lg


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de