www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Matrix A mit det(A) = 2 finden
Matrix A mit det(A) = 2 finden < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix A mit det(A) = 2 finden: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:41 Do 17.01.2013
Autor: mikescho

Aufgabe
Sei [mm] A = (a_{ij}) [/mm] eine [mm] n \times n [/mm] Matrix mit [mm] a_{ij} \in \mathbb{Z} [/mm] und [mm] det(A) = 2 [/mm]. Kann es passieren, dass die Einträge der Matrix [mm] A^{-1} [/mm] alle ganze Zahlen sind? Geben Sie entweder ein Beispiel an, oder begründen Sie warum das nicht möglich ist.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo liebe Matheraum Community,

Ich habe mich schon eine längere Zeit mit dieser Aufgabe beschäftigt und bin leider nicht sehr weit gekommen.

Am Anfang hatte ich mir überlegt, dass man diese Aufgabe mit der Cramer Matrix lösen kann. In diesem Zusammenhang haben wir in der Vorlesung die Formel [mm] det(A)^{-1} * A^{\#} = A^{-1} * E_{n} [/mm] kennen gelernt. Ich habe mir dann überlegt, dass die Cramer Matrix nur aus vielfachen von 2 bestehen darf, da man die Matrix noch mit [mm] \frac{1}{2} [/mm] multiplizieren muss.

Leider kann ich kein konrektes Beispiel finden.

Ich bin mir jetzt auch nicht mehr sicher ob dieses Problem überhaupt eine Lösung hat.

Ich hoffe ihr könnt mir weiterhelfen. Ich würde mich über jeden kleinen Hinweis freuen.

Danke für eure Bemühungen.

        
Bezug
Matrix A mit det(A) = 2 finden: Antwort
Status: (Antwort) fertig Status 
Datum: 14:46 Do 17.01.2013
Autor: fred97


> Sei [mm]A = (a_{ij})[/mm] eine [mm]n \times n[/mm] Matrix mit [mm]a_{ij} \in \mathbb{Z}[/mm]
> und [mm]det(A) = 2 [/mm]. Kann es passieren, dass die Einträge der
> Matrix [mm]A^{-1}[/mm] alle ganze Zahlen sind? Geben Sie entweder
> ein Beispiel an, oder begründen Sie warum das nicht
> möglich ist.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Hallo liebe Matheraum Community,
>  
> Ich habe mich schon eine längere Zeit mit dieser Aufgabe
> beschäftigt und bin leider nicht sehr weit gekommen.
>  
> Am Anfang hatte ich mir überlegt, dass man diese Aufgabe
> mit der Cramer Matrix lösen kann. In diesem Zusammenhang
> haben wir in der Vorlesung die Formel [mm]det(A)^{-1} * A^{\#} = A^{-1} * E_{n}[/mm]
> kennen gelernt. Ich habe mir dann überlegt, dass die
> Cramer Matrix nur aus vielfachen von 2 bestehen darf, da
> man die Matrix noch mit [mm]\frac{1}{2}[/mm] multiplizieren muss.
>  
> Leider kann ich kein konrektes Beispiel finden.
>  
> Ich bin mir jetzt auch nicht mehr sicher ob dieses Problem
> überhaupt eine Lösung hat.
>  
> Ich hoffe ihr könnt mir weiterhelfen. Ich würde mich
> über jeden kleinen Hinweis freuen.
>  
> Danke für eure Bemühungen.



Ohne Worte:

[mm] \pmat{ 1 & 0 \\ 0 & 2 } [/mm]

FRED


Bezug
                
Bezug
Matrix A mit det(A) = 2 finden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:48 Do 17.01.2013
Autor: mikescho

Aber wenn man die Matrix invertiert, dann erhalte ich doch diese Matrix [mm] \pmat{ 1 & 0 \\ 0 & \frac{1}{2} } [/mm] und diese Matrix besteht nicht aus ganzen Zahlen. Oder habe ich deine Antwort missverstanden?

Bezug
                        
Bezug
Matrix A mit det(A) = 2 finden: Antwort
Status: (Antwort) fertig Status 
Datum: 20:06 Do 17.01.2013
Autor: Schadowmaster

moin,

Die Cramersche Matrix (ich nehme mal an du meinst die []Adjunkte ) ist schon eine ganz nette Idee.
Leider liefert sie dir nicht die gewünschte Aussage.
Weißt du bereits, dass die Determinante multiplikativ ist, dass also $det(AB) = det(A)*det(B)$?
Nimm nun an, dass $A$ eine Matrix mit Determinante 2 ist. Was folgt dann für [mm] $det(A^{-1})$? [/mm]
Ist das möglich, wenn [mm] $A^{-1}$ [/mm] eine ganzzahlige Matrix wäre (falls ja: Beispiel, falls nein: Begründung/Beweis)?


lg

Schadow

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de