www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Matrix LR-Zerlegbar
Matrix LR-Zerlegbar < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix LR-Zerlegbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:31 Mi 23.04.2008
Autor: Tanzmaus2511

Hallo habe mal eine Frage,
die bei uns ein wenig für Verwirrung sorgt, weil wir uns uneinig in der Beantwortung sind.

Wir haben folgende Matrizen:

A= [mm] \pmat{ 1 & 2 \\ 1 & 2 } [/mm]
B= [mm] \pmat{ 0 & 1 \\ 0 & 1 } [/mm]
C= [mm] \pmat{ 0 & 1 \\ 0 & 2 } [/mm]

Wir sollen sagen, ob die Matrix eine LR-Zerlegung hat und wenn ja, ob sie eindeutig ist.

Die A ist nicht LR-zerlegbar, weil die Matrix nicht regulär ist, also die det(A) =0 ist. Das gleiche habe ich als Begründung zur Matrix C.

Bei der Matrix B sage ich auch, dass sie nicht zerlegbar ist, denn es gibt ja den Satz: Es gibt genau dann eine LR-Zerlegung, wenn die Hauptabschnittsdeterminanten von B ungleich null sind. Den wende ich hier an.

Was meint ihr dazu. Bei der Matrix B sind wir uns einig. Nur bei der A und C meinen einige, dass man nicht über die Determinante gehen kann.

Wäre toll, wenn wir von euch ein Feedback bekommen.
Grüße


        
Bezug
Matrix LR-Zerlegbar: Antwort
Status: (Antwort) fertig Status 
Datum: 16:44 Fr 25.04.2008
Autor: MathePower

Hallo Tanzmaus2511,

> Hallo habe mal eine Frage,
> die bei uns ein wenig für Verwirrung sorgt, weil wir uns
> uneinig in der Beantwortung sind.
>  
> Wir haben folgende Matrizen:
>  
> A= [mm]\pmat{ 1 & 2 \\ 1 & 2 }[/mm]
>  B= [mm]\pmat{ 0 & 1 \\ 0 & 1 }[/mm]
>  C=
> [mm]\pmat{ 0 & 1 \\ 0 & 2 }[/mm]
>  
> Wir sollen sagen, ob die Matrix eine LR-Zerlegung hat und
> wenn ja, ob sie eindeutig ist.
>  
> Die A ist nicht LR-zerlegbar, weil die Matrix nicht regulär
> ist, also die det(A) =0 ist. Das gleiche habe ich als
> Begründung zur Matrix C.
>  
> Bei der Matrix B sage ich auch, dass sie nicht zerlegbar
> ist, denn es gibt ja den Satz: Es gibt genau dann eine
> LR-Zerlegung, wenn die Hauptabschnittsdeterminanten von B
> ungleich null sind. Den wende ich hier an.
>  
> Was meint ihr dazu. Bei der Matrix B sind wir uns einig.
> Nur bei der A und C meinen einige, dass man nicht über die
> Determinante gehen kann.
>  
> Wäre toll, wenn wir von euch ein Feedback bekommen.

A läßt sich sehr wohl in zwei Matrizen L und R zerlegen:

[mm]\pmat{ 1 & 2 \\ 1 & 2 }=\pmat{ 1 & 0 \\ 1 & 1 }*\pmat{ 1 & 2 \\ 0 & 0 }[/mm]

Während dies bei B und C nicht möglich ist.

Vertauscht man die Spalten von B und C so ist eine solche Zerlegung möglich.


>  Grüße
>  

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de