www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Matrix "X" aus Gleichung
Matrix "X" aus Gleichung < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix "X" aus Gleichung: Denkanstoß
Status: (Frage) beantwortet Status 
Datum: 09:07 Mo 17.08.2009
Autor: ronin1987

Aufgabe
Berechnen Sie die Matrix X aus folgender Gleichung, indem sie zunächst nach X auflösen:

AXB - 2XB - 3D = 5C mit

A = [mm] \pmat{ 3 & -1 \\ 1 & 0 } [/mm]
B = [mm] \pmat{ 1 & 0 \\ 1 & 1 } [/mm]
C = [mm] \pmat{ 1 & 2 \\ 2 & -1 } [/mm]
D = [mm] \pmat{ -2 & -3 \\ -3 & 2 } [/mm]



Erstmal Guten Morgen,

ich habe die hier nachfolgenden Fragen in keinem anderen Forum gestellt.

Also an und für sich habe ich einfach mal losgelegt und die Gleichung umgestellt. Hier meine Vorgehensweise:

AXB - 2XB - 3D = 5C
AXB - 2XB         = 5C + 3D
X(AB - 2B)        = 5C + 3D
X                      = [mm] \bruch{5C + 3D}{AB - 2B} [/mm]

soweit so gut, ich habe auch bereits die Additionen bzw. multiplikationen durchgeführt.

Im Zähler steht dann die Matrix

--> [mm] \pmat{ -1 & 1 \\ 1 & 1 } [/mm]

Im Nenner steht dann die Matrix

--> [mm] \pmat{ 0 & -1 \\ -1 & 2 } [/mm]

und ab hier stehe ich dann leider auch völlig auf dem Schlauch.

Habe die division von Matrizen mal gegoogelt, aber keine aussagekräftigen und vor allem erklärten Rechnungen gefunden. Also ich kann mir vorstellen, dass das was mit der inversen Matrix (ich hoffe die heißt so) zu tun hat, weil man dann ja zum Beispiel schreiben kann [mm] A^{-1} [/mm] was ja einem A im Nenner entsprechen würde. Aber wie genau ich da jetzt vorgehe weis ich leider nicht.

Freue mich auf jeden Fall schon auf Antworten und bedanke mich im Voraus schon einmal für eure Mühe.

Mfg,
Sebastian

        
Bezug
Matrix "X" aus Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 09:56 Mo 17.08.2009
Autor: schachuzipus

Hallo Sebastian,

> Berechnen Sie die Matrix X aus folgender Gleichung, indem
> sie zunächst nach X auflösen:
>  
> AXB - 2XB - 3D = 5C mit
>  
> A = [mm]\pmat{ 3 & -1 \\ 1 & 0 }[/mm]
>  B = [mm]\pmat{ 1 & 0 \\ 1 & 1 }[/mm]
>  
> C = [mm]\pmat{ 1 & 2 \\ 2 & -1 }[/mm]
>  D = [mm]\pmat{ -2 & -3 \\ -3 & 2 }[/mm]
>  
>
>
> Erstmal Guten Morgen,
>  
> ich habe die hier nachfolgenden Fragen in keinem anderen
> Forum gestellt.
>  
> Also an und für sich habe ich einfach mal losgelegt und
> die Gleichung umgestellt. Hier meine Vorgehensweise:
>  
> AXB - 2XB - 3D = 5C
>  AXB - 2XB         = 5C + 3D [ok]
>  X(AB - 2B)        = 5C + 3D

Die Matrixmultiplikation ist i.A. nicht kommutativ, du kannst linkerhand aber schreiben [mm] $\left(A-2\cdot{}\mathbb{E}\right)\cdot{}XB$ [/mm]

>  X                      = [mm]\bruch{5C + 3D}{AB - 2B}[/mm]
>  
> soweit so gut,

Soweit eher nicht so gut ;-)

Wie dividiert man denn durch Matrizen??

Das ist nicht definiert.

Mal angenommen, dein Schritt vor dem Teilen wäre richtig, dann dürftest du allenfalls - falls $AB-2B$ invertierbar ist - von rechts [mm] $(AB-2B)^{-1}$ [/mm] multiplizieren

In der korrekten letzten Zeile: [mm] $(A-2\mathbb{E})XB=5C+3D$ [/mm] darfst du - falls [mm] $A-2\mathbb{E}$ [/mm] und $B$ invertierbar sind - von rechts mit [mm] $B^{-1}$ [/mm] und von links mit [mm] $(A-2\mathbb{E})^{-1}$ [/mm] multiplizieren

> ich habe auch bereits die Additionen bzw.
> multiplikationen durchgeführt.
>
> Im Zähler steht dann die Matrix
>  
> --> [mm]\pmat{ -1 & 1 \\ 1 & 1 }[/mm]
>  
> Im Nenner steht dann die Matrix
>  
> --> [mm]\pmat{ 0 & -1 \\ -1 & 2 }[/mm]
>  
> und ab hier stehe ich dann leider auch völlig auf dem
> Schlauch.

Das habe ich nicht nachgerechnet ...

>  
> Habe die division von Matrizen mal gegoogelt, aber keine
> aussagekräftigen und vor allem erklärten Rechnungen
> gefunden.

Das hätte mich auch gewundert ;-)

> Also ich kann mir vorstellen, dass das was mit
> der inversen Matrix (ich hoffe die heißt so) zu tun hat,

Ja, siehe oben, FALLS du die Inverse bilden kannst (das ist ja i.A. nicht klar)

> weil man dann ja zum Beispiel schreiben kann [mm]A^{-1}[/mm] was ja
> einem A im Nenner entsprechen würde. Aber wie genau ich da
> jetzt vorgehe weis ich leider nicht.

s.o.

>  
> Freue mich auf jeden Fall schon auf Antworten und bedanke
> mich im Voraus schon einmal für eure Mühe.
>  
> Mfg,
>  Sebastian


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de