Matrix als Produkt darstellen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Sei A = [mm] \pmat{ s_0 & s_1 & \cdots & s_{n-1} &1 \\ s_1 & s_2 & \cdots & s_n&x\\ s_2 & s_3 & \cdots & s_{n+1}&x^2\\ \vdots& & & & \vdots\\s_{n-1}&s_n&\cdots&s_{2n-2}&x^{n-1}\\s_n&s_{n+1}&\cdots&s_{2n-1}&x^n} [/mm] mit [mm] s_k=x_1^k+\cdots+x_n^k [/mm] .
Weiterhin sei die Vandermondesche Matrix [mm] V:=\pmat{1&t_1&\cdots &t_1^n\\1&t_2&\cdots&t_2^n\\\vdots&&&\vdots\\ 1&t_{n+1}&\cdots&t_{n+1}^n} [/mm] mit [mm] t_1,\cdots,t_{n+1}\in \IR
[/mm]
Gesucht ist nun eine Matrix B, so dass A=V*B mit V und B geeignet gewählt, um die det(A) zu berechnen. |
Moin Moin.
Also ich habe bereits ein paar Sachen probiert, irgendwie komme ich aber nicht weiter.
V wird ja wahrscheinlich [mm] V=\pmat{1&x_1&\cdots &x_1^n\\1&x_2&\cdots&x_2^n\\\vdots&&&\vdots\\ 1&x_{n+1}&\cdots&x_{n+1}^n} [/mm] mit [mm] x_1,\cdots,x_{n+1} [/mm] sein.
Dann scheint B ja irgendwie [mm] V^T [/mm] zu ähneln.
Nur wie komme ich auf die letzte Spalte von A? Oder macht es Sinn, A erst umzuformen?
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:20 Mi 25.04.2007 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|