Matrix aus Kern konstruieren < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Es sei $A = [mm] \pmat{ 2 & 3 \\ 3 & 4 \\ 4 & 5 \\ 5 & 6 \\ 6 & 7 \\ 7 & 8} \in \IR^{6 \times 2}$
[/mm]
a) Geben Sie eine Matrix $M [mm] \in \IR^{6 \times 6}$ [/mm] an, sodass Kern(M) = Spaltenraum(A).
b) Geben Sie für allgemeine $m,n [mm] \in \IN$ [/mm] mit $m [mm] \leq [/mm] n$ und $A [mm] \in \IR^{n \times m}$ [/mm] mit Rang(A) = m ein Verfahren für die Berechnung von $M [mm] \in \IR^{n \times n}$ [/mm] an. |
So, ich hoffe ich hab alle n,m etc. richtig abgetippt.^^
Zu a):
Ich hab erstmal die beiden Vektoren etwas schöner gemacht; die Basis braucht ja nur zwei beliebige linear unabhängige Vektoren aus dem Erzeugnis:
$A2 = [mm] \pmat{ 0& 1 \\ 1 & 1 \\ 2 & 1 \\ 3 & 1 \\ 4 & 1 \\ 5 & 1}$
[/mm]
Dann gucke ich, wie mein M aussehen muss.
Zum Glück reicht es für die Aufgabe ein M anzugeben, dass diese Vorgaben erfüllt, ich muss nicht alle M nennen.
Da $dim(Kern(M)) = 2$ sein soll muss schonmal Rang(M) = 4.
Da $M [mm] \in \IR^{6 \times 6}$ [/mm] sein soll wähle ich einfach für die beiden letzten Zeilen zwei Nullzeilen.
Nun muss ich "nur" noch 4 linear unabhänige Zeilen finden, die multipliziert mit den beiden Spalten aus A2 jeweils 0 ergeben.
Leider ist das mehr raten als sonstwas und keinesfalls ein "Verfahren", also bei b) muss man es dann eh anders machen.
Mir fällt nur leider kein Weg ein wie man sowas hinkriegt ohne dass man irgendwas ausprobieren/ "von Hand" machen muss...
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:00 Mo 06.06.2011 | Autor: | felixf |
Moin!
> Es sei [mm]A = \pmat{ 2 & 3 \\ 3 & 4 \\ 4 & 5 \\ 5 & 6 \\ 6 & 7 \\ 7 & 8} \in \IR^{6 \times 2}[/mm]
>
> a) Geben Sie eine Matrix [mm]M \in \IR^{6 \times 6}[/mm] an, sodass
> Kern(M) = Spaltenraum(A).
> b) Geben Sie für allgemeine [mm]m,n \in \IN[/mm] mit [mm]m \leq n[/mm] und
> [mm]A \in \IR^{n \times m}[/mm] mit Rang(A) = m ein Verfahren für
> die Berechnung von [mm]M \in \IR^{n \times n}[/mm] an.
> So, ich hoffe ich hab alle n,m etc. richtig abgetippt.^^
>
> Zu a):
>
> Ich hab erstmal die beiden Vektoren etwas schöner gemacht;
> die Basis braucht ja nur zwei beliebige linear unabhängige
> Vektoren aus dem Erzeugnis:
> [mm]A2 = \pmat{ 0& 1 \\ 1 & 1 \\ 2 & 1 \\ 3 & 1 \\ 4 & 1 \\ 5 & 1}[/mm]
>
> Dann gucke ich, wie mein M aussehen muss.
> Zum Glück reicht es für die Aufgabe ein M anzugeben,
> dass diese Vorgaben erfüllt, ich muss nicht alle M
> nennen.
> Da [mm]dim(Kern(M)) = 2[/mm] sein soll muss schonmal Rang(M) = 4.
> Da [mm]M \in \IR^{6 \times 6}[/mm] sein soll wähle ich einfach
> für die beiden letzten Zeilen zwei Nullzeilen.
> Nun muss ich "nur" noch 4 linear unabhänige Zeilen
> finden, die multipliziert mit den beiden Spalten aus A2
> jeweils 0 ergeben.
> Leider ist das mehr raten als sonstwas und keinesfalls ein
> "Verfahren", also bei b) muss man es dann eh anders
> machen.
>
> Mir fällt nur leider kein Weg ein wie man sowas hinkriegt
> ohne dass man irgendwas ausprobieren/ "von Hand" machen
> muss...
Es ist ja [mm] $\ker [/mm] M = [mm] \{ M x \mid x \in \IR^6 \}$ [/mm] und $Spaltenraum(A) = [mm] \{ \sum_{i=1}^2 \lambda_i A_i \mid \lambda \in \IR \}$, [/mm] wobei [mm] $A_1, A_2$ [/mm] die Spalten von $A$ sind. Es muss also $M [mm] A_1 [/mm] = 0$ und $M [mm] A_2 [/mm] = 0$ gelten. Jetzt kann man das auch zusammensetzen: $M [mm] A_1 [/mm] = 0 [mm] \wedge [/mm] M [mm] A_2 [/mm] = 0 [mm] \Leftrightarrow [/mm] M A = 0$.
Wenn du das transponierst, steht da [mm] $A^T M^T [/mm] = 0$. Was nichts anderes bedeutet, als dass die Spalten von [mm] $M^T$ [/mm] im Kern von [mm] $A^T$ [/mm] liegen.
Bekommst du damit eine Idee, wie du $M$ bestimmen kannst?
LG Felix
|
|
|
|