www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Matrix berechnen
Matrix berechnen < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix berechnen: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:23 Mi 09.12.2009
Autor: zocca21

Aufgabe
Berechnen Sie die Matrix A der linearen Abbildung : [mm] R^2 [/mm] → [mm] R^2 [/mm] : v → Av
bezüglich der Standardbasis, wobei  folgende Werte annimmt:

[mm] \alpha\pmat{ 1 \\ 0} [/mm] = [mm] \pmat{ 3 \\ 5} [/mm]
[mm] \alpha\pmat{ 2 \\ 1} [/mm] = [mm] \pmat{ 1 \\ 7} [/mm]

So bin schon den ganzen Mittag am rumprobieren, da merkt man dann wohl das man das Prinzip nicht verstanden hat.

Ich hatte zunächst folgenden Gedanken:
"bezüglich der Standarbasis, habe ich an die Einheitsbasis gedacht" ist das dasselbe?

[mm] \pmat{ 3 \\ 5} [/mm] = a * [mm] \pmat{ 1 \\ 0} [/mm] + b *  [mm] \pmat{ 0 \\ 1} [/mm]

dasselbe für [mm] \pmat{ 1 \\ 7} [/mm]

Zufälligerweise hat es ja auch zunächst gepasst, was wohl damit zusammenhängt, dass [mm] \alpha \pmat{ 1 \ 0} [/mm] steht.
Jedoch konnte ich mir aus den Gegebenheiten kein Verhältnis wie das funktionieren könnte ableiten.

Vielen Dank

        
Bezug
Matrix berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:41 Mi 09.12.2009
Autor: MathePower

Hallo zocca21,

> Berechnen Sie die Matrix A der linearen Abbildung : [mm]R^2[/mm] →
> [mm]R^2[/mm] : v → Av
>  bezüglich der Standardbasis, wobei  folgende Werte
> annimmt:
>  
> [mm]\alpha\pmat{ 1 \\ 0}[/mm] = [mm]\pmat{ 3 \\ 5}[/mm]
> [mm]\alpha\pmat{ 2 \\ 1}[/mm] = [mm]\pmat{ 1 \\ 7}[/mm]
>  
> So bin schon den ganzen Mittag am rumprobieren, da merkt
> man dann wohl das man das Prinzip nicht verstanden hat.
>  
> Ich hatte zunächst folgenden Gedanken:
>  "bezüglich der Standarbasis, habe ich an die
> Einheitsbasis gedacht" ist das dasselbe?
>  
> [mm]\pmat{ 3 \\ 5}[/mm] = a * [mm]\pmat{ 1 \\ 0}[/mm] + b *  [mm]\pmat{ 0 \\ 1}[/mm]
>  
> dasselbe für [mm]\pmat{ 1 \\ 7}[/mm]
>  
> Zufälligerweise hat es ja auch zunächst gepasst, was wohl
> damit zusammenhängt, dass [mm]\alpha \pmat{ 1 \ 0}[/mm] steht.
>  Jedoch konnte ich mir aus den Gegebenheiten kein
> Verhältnis wie das funktionieren könnte ableiten.
>  

Setze hier die Definition der linearen Abbildung ein.

Für die Matrix A muß dann gelten:

[mm] A*\pmat{ 1 \\ 0} = \pmat{ 3 \\ 5}[/mm]

[mm]A*\pmat{ 2 \\ 1} = \pmat{ 1 \\ 7}[/mm]

mit [mm]A \in M_{2,2}[/mm]

Ausgeschrieben lautet das:

[mm]\pmat{a_{11} & a_{12} \\ a_{21} & a_{22}}*\pmat{ 1 \\ 0} = \pmat{ 3 \\ 5}[/mm]

[mm]\pmat{a_{11} & a_{12} \\ a_{21} & a_{22}}*\pmat{ 2 \\ 1} = \pmat{ 1 \\ 7}[/mm]

Daraus bestimmen sich die [mm]a_{ik}, \ 1 \le i,k \le 2[/mm]


> Vielen Dank


Gruss
MathePower


Bezug
                
Bezug
Matrix berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:37 Mi 09.12.2009
Autor: zocca21


> Ausgeschrieben lautet das:
>  
> [mm]\pmat{a_{11} & a_{12} \\ a_{21} & a_{22}}*\pmat{ 1 \\ 0} = \pmat{ 3 \\ 5}[/mm]
>
> [mm]\pmat{a_{11} & a_{12} \\ a_{21} & a_{22}}*\pmat{ 2 \\ 1} = \pmat{ 1 \\ 7}[/mm]
>  
> Daraus bestimmen sich die [mm]a_{ik}, \ 1 \le i,k \le 2[/mm]


Okay, aber wie berechne ich das Ganze, wenn ich 4 Variablen habe(sind es doch in diesem Fall pro Ausrduck oder?)

Gibt es vielleicht eine gute Seite, die es anschaulich erklärt?

Danke,danke!



Bezug
                        
Bezug
Matrix berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:47 Mi 09.12.2009
Autor: Stefan-auchLotti


> > Ausgeschrieben lautet das:
>  >  
> > [mm]\pmat{a_{11} & a_{12} \\ a_{21} & a_{22}}*\pmat{ 1 \\ 0} = \pmat{ 3 \\ 5}[/mm]
> >
> > [mm]\pmat{a_{11} & a_{12} \\ a_{21} & a_{22}}*\pmat{ 2 \\ 1} = \pmat{ 1 \\ 7}[/mm]
>  
> >  

> > Daraus bestimmen sich die [mm]a_{ik}, \ 1 \le i,k \le 2[/mm]
>  
>
> Okay, aber wie berechne ich das Ganze, wenn ich 4 Variablen
> habe(sind es doch in diesem Fall pro Ausrduck oder?)
>  
> Gibt es vielleicht eine gute Seite, die es anschaulich
> erklärt?
>
> Danke,danke!
>  
>  

Es liegen doch nun vier Gleichungen mit vier Variablen vor! Multiplizer mal die Vektoren miteinander und schau, was für Gleichungen du hast. Mit Gauss gehts dann weiter.

Stefan.

Bezug
                                
Bezug
Matrix berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:46 Do 10.12.2009
Autor: zocca21

Okay habe nun:

A= [mm] \pmat{ 3 & -5 \\ 5 & -3 } [/mm]

Woran erkenne ich, dass ich nun so vorgehe. Das Prinzip habe ich verstanden, aber nicht warum.

Ich bekomme hier ja durch das Alpha eine Abbildung gegeben?

Was bedeutet hier bezüglich der Standardbasis?

Danke

Bezug
                                        
Bezug
Matrix berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:11 Do 10.12.2009
Autor: angela.h.b.


> Okay habe nun:
>  
> A= [mm]\pmat{ 3 & -5 \\ 5 & -3 }[/mm]
>  
> Woran erkenne ich, dass ich nun so vorgehe. Das Prinzip
> habe ich verstanden, aber nicht warum.
>  
> Ich bekomme hier ja durch das Alpha eine Abbildung
> gegeben?
>  
> Was bedeutet hier bezüglich der Standardbasis?

Hallo,

"A ist die darstellende Matrix von [mm] \alpha [/mm] bzgl. der Standardbasis" bedeutet:

Wenn Du A mit einem Vektor v, der in Koordinaten bzgl. der Standardbasis gegeben ist, multiplizierst, dann bekommst Du das Bild [mm] \alpha(v) [/mm] in Koordinaten bzgl. der Standardbasis.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de