www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Matrix bez. Basis
Matrix bez. Basis < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix bez. Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:19 Do 15.03.2012
Autor: unibasel

Aufgabe
Es sei V ein Vektorraum über einen Körper K mit Basis [mm] (v_{1},...,v_{n}). [/mm] Weiter seien [mm] a_{1},...,a_{n-1} [/mm] beliebige Elemente von K. Die Vorgaben

[mm] \phi(v_{i})=\begin{cases} v_{i+1}, & \mbox{für } i legen einen Endomorphismus [mm] \phi [/mm] von V fest.
a) Man bestimme die Matrix von [mm] \phi [/mm] bezüglich der gegebenen Basis.
b) Man bestimme das charakteristische Polynom von [mm] \phi. [/mm]

Nun also ich nehme mal an, ich muss die Vorgabe als Vorschrift benutzen, um auf meine Matrix zu kommen.

Leider weiss ich nicht genau, wie ich dies machen muss.

Teilaufgabe b denke ich kann ich dann lösen, indem ich das charakteristische Polynom mit Hilfe der Formel [mm] det(t*E_{n}-A) [/mm] verwende (mit A ist die Matrix von [mm] \phi [/mm] bez. der gegebenen Basis gemeint)
Das sollte dann eigentlich nicht mehr ein Problem sein.

Nur fehlt mir eben die Matrix dazu, da ich nicht genau weiss, wie diese bilden.
Was steht denn in den Zeilen und was in den Spalten?

Danke für die Hilfe im Voraus.
mfg :)

        
Bezug
Matrix bez. Basis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:39 Do 15.03.2012
Autor: korbinian

Hallo,
Dein Text ist (fast) nicht lesbar.
Bitte nachbessern!
Gruß korbinian

Bezug
        
Bezug
Matrix bez. Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 17:58 Do 15.03.2012
Autor: korbinian


> Es sei V ein Vektorraum über einen Körper K mit Basis
> [mm](v_{1},...,v_{n}).[/mm] Weiter seien [mm]a_{1},...,a_{n-1}[/mm] beliebige
> Elemente von K. Die Vorgaben
>
> [mm]\phi(v_{i})=\begin{cases} v_{i+1}, & \mbox{für } i
>  
> legen einen Endomorphismus [mm]\phi[/mm] von V fest.
>  a) Man bestimme die Matrix von [mm]\phi[/mm] bezüglich der
> gegebenen Basis.
>  b) Man bestimme das charakteristische Polynom von [mm]\phi.[/mm]
>  Nun also ich nehme mal an, ich muss die Vorgabe als
> Vorschrift benutzen, um auf meine Matrix zu kommen.

>

Richtig!
Diese Vorgabe gibt Dir die Bilder der Basisvektoren als Linearkombination der Basisvektoren. Sie ist für die ersten n-1 so einfach, dass Du sie vielleicht nicht sofort als "Linearkombination" erkennst.
Wie Du daraus die Matrix erstellst findest Du sicher in Deinem Skript. Etwa "Die Koordinatenvektoren der Bilder der Basisvektoren sind...."
Ich hoffe damit kommst Du weiter

Gruß korbinian




Bezug
                
Bezug
Matrix bez. Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:56 Do 15.03.2012
Autor: unibasel

Nun dann sollte dies folgendermassen aussehen?

[mm] A=\pmat{ a_{1}v_{1} & 0 & ... & ... & 0 \\ v_{1} & a_{2}v_{2} & 0 & ... & 0 \\ v_{?} & v_{?} & a_{3}v_{3} & 0 & 0 \\ ... & ... & & & a_{n}v_{n}} [/mm]

Hmm bin ein wenig verwirrt...

für i=n, das heisst in der Diagonale.
Und für i<n wäre das in der unteren Hälfte der Matrix?

Wie sieht diese dann genau aus? Danke vielmals für die Hilfe :)  

Bezug
                        
Bezug
Matrix bez. Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 19:13 Do 15.03.2012
Autor: korbinian


> Nun dann sollte dies folgendermassen aussehen?
>  
> [mm]A=\pmat{ a_{1}v_{1} & 0 & ... & ... & 0 \\ v_{1} & a_{2}v_{2} & 0 & ... & 0 \\ v_{?} & v_{?} & a_{3}v_{3} & 0 & 0 \\ ... & ... & & & a_{n}v_{n}}[/mm]
>  

Leider nicht.
In der Matrix dürfen nur Elemente aus dem Körper stehen; nicht die Vektoren.
In die Spalten der Matrix müssen die Koordinaten der Bilder der Basisvektoren; das sind die Koeffizienten der Linearkombination. Also bei den ersten n-1 Spalten nur eine 1 sonst 0.Kommst Du nun klar?
Gruß korbinian

Bezug
                                
Bezug
Matrix bez. Basis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:19 Do 15.03.2012
Autor: unibasel

ah so ja sorry :)
jetzt habe ichs verstanden! Vielen Dank :) mfg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de