www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Abbildungen und Matrizen" - Matrix gesucht
Matrix gesucht < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix gesucht: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:35 Mi 20.01.2010
Autor: Niladhoc

Aufgabe
Welche orthogonale 3x3-Matrix [mm] A\not=E_3 [/mm] erfüllt die EIgenschaften
[mm] A^3=E_3 [/mm] und [mm] A*\vektor{1 \\ 1 \\ 1}=\vektor{1 \\ 1 \\ 1} [/mm]
Wie viele Lösungen gibt es? Gibt es auch eine uneigentlich orthogonale Matrix mit diesen Eigenschaften?

Hallo,

Ich kann der Matrix leider nur sehr unzusammenhängende Eigenschaften entlocken.
Zunächst muss [mm] det(A)^3=1, [/mm] somit det(A)=1 sein. [mm] A^2=A^T=A^{-1}. [/mm]
Sagen wir die Matrix sei diagonalisierbar, sprich [mm] S^{-1}AS=D, [/mm] so ist [mm] D^3=S^{-1}A^3S [/mm] und somit [mm] A=S^{-1}D^3S. [/mm] Dabei dürfen die Diagonaleinträge nicht alle gleich eins sein. Zur Konstruktion der zulässigen Matrizen hilft das glaub ich auch nicht viel, es kann ja auch nicht-diagonalisierbare Matrizen mit den Eigenschaften geben.

Kann mir jemand sagen, worauf man hier schauen muss?

lg

        
Bezug
Matrix gesucht: heiße
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:00 Mi 20.01.2010
Autor: chrisno

Ich habe jetz nicht den sysematishen Ansatz. Dafür aber eine erste Idee.
Drei mal die Matrix auf etwas anwenden und es kommt wieder das ursprngliche heraus. Dann fallen die Speigelungen und Streckungen weg. Kandidaten sind die Drehungen um [mm] \pm [/mm] (60°) das sollte natürlich 120° heißen, wie es weiter untern steht.
Da [mm] \vektor{1\\1\\1} [/mm] stehen bleiben soll, ist das die Drehachse.
Andere Lösungen sehe ich nicht, vielleicht jemand anderes.

Bezug
        
Bezug
Matrix gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 16:13 Do 21.01.2010
Autor: gfm

Ich kram mal das zusammen was ich von damals(~10 Jahre her) noch im Kopf habe (ohne Gewähr!):

Orthogonale Matrizen des [mm] \IR^{3} [/mm] beschreiben Drehungen (Det =1) oder Drehspiegelungen (Det = -1). Ein Eigenwert ist = Det. Der Eigenvektor hierzu ist die Drehachse. Die andere beiden Eigenwerte sind konjugiert komplex.
In einer orthomormalen Basis welche als ersten Vektor den normierten Achsenvektor hat ist dann eine Darstellung

[mm] \pmat{ 1 & 0 & 0 \\ 0 & cos(\phi) & -sin(\phi) \\ 0 & sin(\phi) & cos(\phi) } [/mm]

Es gibt unendlich viele ähnliche Matrizen, die auch den Zweck erfüllen, da man ja bei der Wahl der orthogonalen Einheitsvektoren aus der zur Drechachse senkrechten Ebene als Basisvektoren frei ist.

Da [mm] A^{3} [/mm] = 1 gelten soll, kommen nur Drehungen um [mm] 120^{\circ} [/mm] oder [mm] 240^{\circ} [/mm] in Frage.

LG

gfm


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de