www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Matrix und Fixpunkt
Matrix und Fixpunkt < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrix und Fixpunkt: Aufgabenhilfe
Status: (Frage) beantwortet Status 
Datum: 15:13 Fr 24.04.2009
Autor: Ultio

Aufgabe 1
Zeigen Sie, dass mit der Matrix A:= [mm] \pmat{ 1 & \sqrt{-2} \\ \sqrt{-2} & 0 } [/mm]   die Ungleichung:
||Ax [mm] ||_{2} \le [/mm] 2  ||x [mm] ||_{2} [/mm] für alle x [mm] \in \IR^{2} [/mm] erfüllt ist.


Aufgabe 2
Beweisen Sie, dass die durch f(x) := ¼ (Ax + b) mittels der oben angegeben Matrix A und dem Vektor b: = (1, [mm] \sqrt{3}) [/mm] definierte Abbildung auf der Teilmenge   D:= {(x,y) I [mm] x^{2} [/mm] + [mm] y^{2} \le [/mm] 1} der euklidischen Ebene [mm] (\IR^{2}, [/mm] Zweinorm) einen eindeutigen Fixpunkt hat.


Hi,
kann mir jemand mal einen Denkanstoß bitte geben.
Dankeschön.
Gruß

Sind meine Überlegungen soweit richtig, wie mach ich da weiter:
[mm] \pmat{ 1 & \sqrt{-2} \\ \sqrt{-2} & 0 } [/mm] * (x,y) =
[mm] \pmat{ x - \sqrt{2} y \\ - \sqrt{2} x } [/mm] da in der Zweinorm ergibt:
[mm] \sqrt{(x - \sqrt{2} y)^{2} +(\sqrt{2} x)^{2}} [/mm] = [mm] \sqrt{(x^{2} - 2 * \sqrt{2}*x*y + y^{2})+(2 x^{2})} [/mm] = [mm] \sqrt{3 x^{2} + 2 y^{2} - 2 * \sqrt{2}*x*y } [/mm]
und der andere Term 2 * ||x [mm] ||_{2} [/mm] wird 2 * [mm] \sqrt{x^{2} + y^{2}} [/mm]
und wie mache ich da weiter?

        
Bezug
Matrix und Fixpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 19:19 Fr 24.04.2009
Autor: felixf

Hallo!

> Zeigen Sie, dass mit der Matrix A:= [mm]\pmat{ 1 & \sqrt{-2} \\ \sqrt{-2} & 0 }[/mm]
>   die Ungleichung:
>   ||Ax [mm]||_{2} \le[/mm] 2  ||x [mm]||_{2}[/mm] für alle x [mm]\in \IR^{2}[/mm]
> erfüllt ist.
>  
>
> Beweisen Sie, dass die durch f(x) := ¼ (Ax + b) mittels der
> oben angegeben Matrix A und dem Vektor b: = (1, [mm]\sqrt{3})[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


> definierte Abbildung auf der Teilmenge   D:= {(x,y) I [mm]x^{2}[/mm]
> + [mm]y^{2} \le[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

1} der euklidischen Ebene [mm](\IR^{2},[/mm] Zweinorm)

> einen eindeutigen Fixpunkt hat.
>  
>
> Hi,
>  kann mir jemand mal einen Denkanstoß bitte geben.
>  Dankeschön.
>  Gruß
>  
> Sind meine Überlegungen soweit richtig, wie mach ich da
> weiter:
>  [mm]\pmat{ 1 & \sqrt{-2} \\ \sqrt{-2} & 0 }[/mm] * (x,y) =
>  [mm]\pmat{ x - \sqrt{2} y \\ - \sqrt{2} x }[/mm] da in der
> Zweinorm ergibt:
>  [mm]\sqrt{(x - \sqrt{2} y)^{2} +(\sqrt{2} x)^{2}}[/mm] =
> [mm]\sqrt{(x^{2} - 2 * \sqrt{2}*x*y + y^{2})+(2 x^{2})}[/mm] =
> [mm]\sqrt{3 x^{2} + 2 y^{2} - 2 * \sqrt{2}*x*y }[/mm]
>  und der
> andere Term 2 * ||x [mm]||_{2}[/mm] wird 2 * [mm]\sqrt{x^{2} + y^{2}}[/mm]
>
> und wie mache ich da weiter?

Du zeigst $3 [mm] x^2 [/mm] + 2 [mm] y^2 [/mm] - 2 [mm] \sqrt{2} [/mm] x y [mm] \le [/mm] 4 [mm] (x^2 [/mm] + [mm] y^2)$ [/mm] fuer alle $x, y [mm] \in \IR$. [/mm]

Zu b): Genau dann ist $x$ ein Fixpunkt von $f$, wenn $f(x) = x$ gilt. Dies liefert dir ein lineares Gleichungssystem; loese dies. Es sollte genau eine Loesung in $D$ geben.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de