www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Matrixnorm und Konditionszahl
Matrixnorm und Konditionszahl < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrixnorm und Konditionszahl: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:29 Sa 19.11.2016
Autor: Schmetterling99

Hi,
ich soll folgendes lösen:
1) Sei Q [mm] \in \IR^{nxn} [/mm] othogonal. Berechne die Konditionszahl [mm] K_{2}(Q) [/mm]
Meine Lösung:
[mm] \parallel [/mm] Q [mm] \parallel_{2} [/mm] = [mm] \wurzel{p(Q^{T}Q)}=\wurzel{p(Q^{-1}Q)} =\wurzel{p(I)}= [/mm] 1
[mm] \parallel Q^{-1} \parallel_{2} [/mm] = [mm] \wurzel{p(QQ^{T})}= \wurzel{p(QQ^{-1})} [/mm] = [mm] \wurzel{p(I)}= [/mm] 1
Dann gilt mit K(A)= [mm] \parallel [/mm] Q [mm] \parallel \parallel Q^{-1} \parallel=1 [/mm]
Stimmt das so?
2) Sei U [mm] \in \IR^{nxn} [/mm] unitär.  Berechne die Konditionszahl K(U)
Hier bin ich mir ziemlich unsicher. Ich habe bis jetzt:
K(U)= [mm] \parallel [/mm] U [mm] \parallel \parallel U^{-1} \parallel= \parallel [/mm] U [mm] \parallel \parallel U^{-H} \parallel= \parallel [/mm] I [mm] \parallel [/mm] =1
So einfach kann es nicht sein oder?
3) Sei A [mm] \in \IR^{nxn} [/mm] symmetrisch und positiv definit. Zeige [mm] K_{2}(A)= \bruch{\lambda_{max}}{\lambda_{min}} [/mm]
Hier weiß ich leider gar nicht weiter. Ich weiß nur, dass [mm] \parallel [/mm] A [mm] \parallel= \wurzel{p(A^{T}A)}, [/mm] wobei p(A) der größte Eigenwert von A ist.
Sei [mm] \lambda_{max} [/mm] der größte Eigenwert von A. Da A symmetrisch und positiv definit ist, ist A invertierbar und der Eigenwert von [mm] A^{-1}=\bruch{1}{\lambda_{max}} [/mm]
Weiter komme ich leider nicht.

Gruß

        
Bezug
Matrixnorm und Konditionszahl: Antwort
Status: (Antwort) fertig Status 
Datum: 14:43 Sa 19.11.2016
Autor: fred97


> Hi,
> ich soll folgendes lösen:
>  1) Sei Q [mm]\in \IR^{nxn}[/mm] othogonal. Berechne die
> Konditionszahl [mm]K_{2}(Q)[/mm]
>  Meine Lösung:
> [mm]\parallel[/mm] Q [mm]\parallel_{2}[/mm] =
> [mm]\wurzel{p(Q^{T}Q)}=\wurzel{p(Q^{-1}Q)} =\wurzel{p(I)}=[/mm] 1
>  [mm]\parallel Q^{-1} \parallel_{2}[/mm] = [mm]\wurzel{p(QQ^{T})}= \wurzel{p(QQ^{-1})}[/mm]
> = [mm]\wurzel{p(I)}=[/mm] 1
>  Dann gilt mit K(A)= [mm]\parallel[/mm] Q [mm]\parallel \parallel Q^{-1} \parallel=1[/mm]
>  
> Stimmt das so?

Ja


>  2) Sei U [mm]\in \IR^{nxn}[/mm] unitär.  Berechne die
> Konditionszahl K(U)
>  Hier bin ich mir ziemlich unsicher. Ich habe bis jetzt:
>  K(U)= [mm]\parallel[/mm] U [mm]\parallel \parallel U^{-1} \parallel= \parallel[/mm]
> U [mm]\parallel \parallel U^{-H} \parallel= \parallel[/mm] I
> [mm]\parallel[/mm] =1
>  So einfach kann es nicht sein oder?

Doch


>  3) Sei A [mm]\in \IR^{nxn}[/mm] symmetrisch und positiv definit.
> Zeige [mm]K_{2}(A)= \bruch{\lambda_{max}}{\lambda_{min}}[/mm]
>  Hier
> weiß ich leider gar nicht weiter. Ich weiß nur, dass
> [mm]\parallel[/mm] A [mm]\parallel= \wurzel{p(A^{T}A)},[/mm] wobei p(A) der
> größte Eigenwert von A ist.
>  Sei [mm]\lambda_{max}[/mm] der größte Eigenwert von A. Da A
> symmetrisch und positiv definit ist, ist A invertierbar und
> der Eigenwert von [mm]A^{-1}=\bruch{1}{\lambda_{max}}[/mm]
>  Weiter komme ich leider nicht.

größter Eigenwert von [mm] A^{-1} [/mm] =1/(kleinster Eigenwert von A)


>  
> Gruß


Bezug
                
Bezug
Matrixnorm und Konditionszahl: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 09:00 So 20.11.2016
Autor: Schmetterling99

Danke Fred!
Ich habe noch eine Frage. Ist bei einer symmetrisch positiv definiten Matrix die Transponierte gleich der Inversen?
Frage damit ich in der Spektralnorm die Transponierte ersetzen kann.
Ansonsten wüsste ich nicht weiter.

Gruß

Bezug
                        
Bezug
Matrixnorm und Konditionszahl: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:22 Di 22.11.2016
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 8m 10. fred97
DiffGlGew/Globaler Existenzsatz
Status vor 1h 18m 3. meili
UNum/Skizzieren einer Menge
Status vor 1h 37m 5. Chris84
DiffGlGew/Loesung DGL
Status vor 2h 20m 2. leduart
ZahlTheo/Kleinstes gem. Vielfachaches
Status vor 3h 22m 3. Hela123
UAlgoDatstrukt/Eigenschaften Binärbäume
^ Seitenanfang ^
www.vorhilfe.de