www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra / Vektorrechnung" - Matrizen-Inversion
Matrizen-Inversion < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizen-Inversion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:50 Mi 29.12.2004
Autor: DrOetker

Hallo!
Unter welchen Bedingungen sind zwei Matrizen A und B zueinander invers?

        
Bezug
Matrizen-Inversion: definition
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:19 Mi 29.12.2004
Autor: andreas

hi

das ist genau der fall, wenn beide matrizen quadratisch sind, das selbe format (also z.b. $n [mm] \times [/mm] n$) haben und gilt, dass

[m] AB = BA = E_n [/m],

wobei [mm] $E_n$ [/mm] die einheitsmatrix vom format $n [mm] \times [/mm] n$ bezeichnet, also

[m] E_n = \left( \begin{array}{ccccc}1 & 0 \\ 0 & 1 & 0 \\ & \ddots & \ddots & \ddots \\ & & 0 & 1 & 0 \\ & & & 0 & 1 \end{array} \right) [/m].


ich gehe davon aus, dass dir nur die definition gefehlt hat, da du keine konkreten fragen gestellt hast!


grüße
andreas

Bezug
                
Bezug
Matrizen-Inversion: kleiner Zusatz
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:08 Do 30.12.2004
Autor: Pommes

Wichtig für Inversion einer Matrix ist dabei auch noch, dass die linear unabhängig sind, da man beim Eliminationsverfahren sonst Nullzeilen erhält, wodurch sich die Matrix nicht invertieren lässt.

Bezug
                        
Bezug
Matrizen-Inversion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:07 Fr 31.12.2004
Autor: DrOetker

Habe ich das richtig verstanden? Wenn ich zwei quadratische Matrizen A und B multipliziere und das ERgebnis die Einheitsmatrix ist, dann sind sie invers.
Richtig???

Bezug
                                
Bezug
Matrizen-Inversion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:32 Fr 31.12.2004
Autor: andreas

hi

ja. genau dann sind die matrizen invers zueinander (das ist also eine eigenschaft die paare von matrizen haben).

grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de