www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Matrizen
Matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizen: Projektion
Status: (Frage) beantwortet Status 
Datum: 16:01 Mi 08.06.2011
Autor: Sarah_Scholz

Aufgabe
Eine K-lineare Abbildung, [mm] \phi [/mm] heißt Projektion, falls [mm] \phi \circ \phi [/mm] = [mm] \phi [/mm] gilt. Für Teile i) und ii) sei [mm] \phi [/mm] : [mm] \IR^{2} \to \IR^{2} [/mm] eine Projektion für die (1,2) [mm] \in [/mm] Ker [mm] (\phi) [/mm] und (1,-1) [mm] \in Im(\phi). [/mm] Man berechne die Matrix [mm] M_{A}^{A} (\phi) [/mm] falls:
i) [mm] A={\vektor{1 \\ 0},\vektor{0 \\ 1}} [/mm] (Standardbasis)
ii) A= [mm] {\vektor{1 \\ 2},\vektor{1 \\ -1}} [/mm]
Seien V ein n-dimensionaler Vektorraum und p: V [mm] \to [/mm] V eine lineare Abbildung mit p [mm] \circ [/mm] p=p
iii) Zeigen Sie, dass es eine ganze Zahl k mit 0 [mm] \le [/mm] k [mm] \le [/mm] n gibt und eine Basis B von V gibt,so dass
[mm] M_{B}^{B} =\pmat{ E_{k} & 0 \\ 0 & 0 } [/mm]
wobei Ek die k [mm] \times [/mm] k Einheitsmatrix bezeichnet (d.h. [mm] M_{B}^{B} [/mm] (p) hat die Nummer 1 in den k ersten Diagonaleinträge und die Nummer 0 in allen anderen Einträge).

OK also bei dieser Aufgabe weiß ich nicht mal womit ich anfangen muss.
Ich würd sagen man liest aus der Angabe ,dass [mm] \phi [/mm] (1,2) = (0,0) und [mm] \phi [/mm] (w,v) = (1,-1) aber viel mehr seh ich da ned.  Wie berechne ich für i) und ii) die Matrix und wie sollte der Beweis in iii) aufgebaut sein?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:12 Mi 08.06.2011
Autor: fred97

Zu i)

Du hast $ [mm] \phi [/mm] $ (w,v) = (1,-1), also ist  [mm] \phi(1,-1)= [/mm]  $ [mm] \phi^2 [/mm] $ (w,v) =  $ [mm] \phi [/mm] $ (w,v) =(1,-1)

Weiter ist

        (1,0)= 1/3(1,2)+2/3(1,-1),

somit ist  [mm] \phi(1,0)=0*(1,2)+2/3(1,-1) [/mm]

Daher ist die erste Spalte der gesuchten Matrix:

0

2/3

FRED

Bezug
                
Bezug
Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:17 Mo 13.06.2011
Autor: froggy60

hat irgendwer eine idee für teilaufgabe 3? bin vollkommen ratlos dabei grade

Bezug
                        
Bezug
Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:43 Mo 13.06.2011
Autor: angela.h.b.


> hat irgendwer eine idee für teilaufgabe 3? bin vollkommen
> ratlos dabei grade

Hallo,

[willkommenmr].

Leider weiß ich nicht, was Du bisher getan und überlegt hast.
Waren Eigenwerte und Eigenvektoren schon dran bei Euch?

Wie dem auch sei: Du suchst eine Basis B mit der Eigenschaft, daß k Basisvektoren [mm] b_1,...,b_k [/mm] durch die betrachtete Abbildung auf sich selbst abgebildet werden,
und der Rest der gesuchten Basisvektoren wird auf die Null abgebildet, ist also eine Basis des Kerns.

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de