www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Matrizen Eigenvektor
Matrizen Eigenvektor < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizen Eigenvektor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:53 Mi 03.06.2009
Autor: Lyrone

Aufgabe 1
Gegeben sei die komplexe Matrix

[mm] A = \begin{pmatrix} 1 & 0 & i \\ 0 & 2 & 0 \\ -1 & 0 & 1 \end{pmatrix}[/mm]

An welcher Eigenschaft der Matrix A können Sie ablesen, dass alle Eigenwerten reell sind?

Aufgabe 2
Zeigen Sie, dass [mm] \vec x_1 = \begin{pmatrix} i \\ 0 \\ 1 \end{pmatrix} [/mm] ein Eigenvektor der Matrix A ist.

Guten Abend,

ich bin gerade dabei mich in Matritzen einzuarbeiten ... .

Die Lösung zur Aufgabe 1 konnte ich trotz gutem Lehrbuch nicht finden.


Aufgabe 2 habe ich einen Ansatz:

[mm](A - \lambda\cdot E) \cdot \vec x_1 \ = \ \vec 0[/mm]

eigensetzt habe ich es so:

[mm] \begin{pmatrix} 1- \lambda & 0 & i \\ 0 & 2- \lambda & 0 \\ -1 & 0 & 1- \lambda \end{pmatrix}\cdot \begin{pmatrix} i \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}[/mm]

Dann habe ich das Produkt ausgerechnet:

[mm] \begin{pmatrix} 1- \lambda & 0 & i \\ 0 & 2- \lambda & 0 \\ -1 & 0 & 1- \lambda \end{pmatrix}\cdot \begin{pmatrix} i \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} i(1- \lambda) & 0 & i \\ 0 & 0 & 0 \\ -1 & 0 & 1- \lambda \end{pmatrix}[/mm]

Somit habe ich nun:

[mm]\begin{pmatrix} i(1- \lambda) & 0 & i \\ 0 & 0 & 0 \\ -1 & 0 & 1- \lambda \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}[/mm]

Das ist ja schon ein bissel unlogisch. Was habe ich hier falsch gemacht?


Wünsche noch einen schönen Abend,

Gruß
Lyrone.

        
Bezug
Matrizen Eigenvektor: Antwort
Status: (Antwort) fertig Status 
Datum: 20:14 Mi 03.06.2009
Autor: MathePower

Hallo Lyrone,

> Gegeben sei die komplexe Matrix
>  
> [mm]A = \begin{pmatrix} 1 & 0 & i \\ 0 & 2 & 0 \\ -1 & 0 & 1 \end{pmatrix}[/mm]


Die Matrix muss doch bestimmt so lauten:

[mm]A = \begin{pmatrix} 1 & 0 & i \\ 0 & 2 & 0 \\ \red{-i} & 0 & 1 \end{pmatrix}[/mm]


>  
> An welcher Eigenschaft der Matrix A können Sie ablesen,
> dass alle Eigenwerten reell sind?
>  Zeigen Sie, dass [mm]\vec x_1 = \begin{pmatrix} i \\ 0 \\ 1 \end{pmatrix}[/mm]
> ein Eigenvektor der Matrix A ist.
>  Guten Abend,
>  
> ich bin gerade dabei mich in Matritzen einzuarbeiten ... .
>  
> Die Lösung zur Aufgabe 1 konnte ich trotz gutem Lehrbuch
> nicht finden.
>  
>
> Aufgabe 2 habe ich einen Ansatz:
>  
> [mm](A - \lambda\cdot E) \cdot \vec x_1 \ = \ \vec 0[/mm]
>
> eigensetzt habe ich es so:
>  
> [mm]\begin{pmatrix} 1- \lambda & 0 & i \\ 0 & 2- \lambda & 0 \\ -1 & 0 & 1- \lambda \end{pmatrix}\cdot \begin{pmatrix} i \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}[/mm]
>  
> Dann habe ich das Produkt ausgerechnet:
>  
> [mm]\begin{pmatrix} 1- \lambda & 0 & i \\ 0 & 2- \lambda & 0 \\ -1 & 0 & 1- \lambda \end{pmatrix}\cdot \begin{pmatrix} i \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} i(1- \lambda) & 0 & i \\ 0 & 0 & 0 \\ -1 & 0 & 1- \lambda \end{pmatrix}[/mm]
>  
> Somit habe ich nun:
>  
> [mm]\begin{pmatrix} i(1- \lambda) & 0 & i \\ 0 & 0 & 0 \\ -1 & 0 & 1- \lambda \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}[/mm]
>  
> Das ist ja schon ein bissel unlogisch. Was habe ich hier
> falsch gemacht?
>  
>
> Wünsche noch einen schönen Abend,
>  
> Gruß
>  Lyrone.


Gruß
MathePower

Bezug
                
Bezug
Matrizen Eigenvektor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:26 Mi 03.06.2009
Autor: Lyrone

Hallo Mathepower,

danke für den Hinweis, du hast Recht. Ich habe meine eigene Schrift nicht erkannt. Nichts desto trotz ist es das gleiche Ergebnis. Aber zur zur besseren Übersicht schreibe ich nochmal alles hin:

[mm]A = \begin{pmatrix} 1 & 0 & i \\ 0 & 2 & 0 \\ -i & 0 & 1 \end{pmatrix}[/mm]

[mm](A - \lambda\cdot E) \cdot \vec x_1 \ = \ \vec 0[/mm]

[mm]\begin{pmatrix} 1- \lambda & 0 & i \\ 0 & 2- \lambda & 0 \\ -i & 0 & 1- \lambda \end{pmatrix}\cdot \begin{pmatrix} i \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}[/mm]

Das einzelne Produkt:

[mm]\begin{pmatrix} 1- \lambda & 0 & i \\ 0 & 2- \lambda & 0 \\ -i & 0 & 1- \lambda \end{pmatrix}\cdot \begin{pmatrix} i \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} i(1- \lambda) & 0 & i \\ 0 & 0 & 0 \\ 1 & 0 & 1- \lambda \end{pmatrix}[/mm]

Somit habe ich:

[mm]\begin{pmatrix} i(1- \lambda) & 0 & i \\ 0 & 0 & 0 \\ 1 & 0 & 1- \lambda \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}[/mm]

Wo habe ich mir hier grob vertan, bin ich überhaupt richtig vorgegangen?

Schönen Gruß,
Lyrone.

Bezug
                        
Bezug
Matrizen Eigenvektor: Antwort
Status: (Antwort) fertig Status 
Datum: 20:38 Mi 03.06.2009
Autor: MathePower

Hallo Lyrone,

> Hallo Mathepower,
>  
> danke für den Hinweis, du hast Recht. Ich habe meine eigene
> Schrift nicht erkannt. Nichts desto trotz ist es das
> gleiche Ergebnis. Aber zur zur besseren Übersicht schreibe
> ich nochmal alles hin:
>  
> [mm]A = \begin{pmatrix} 1 & 0 & i \\ 0 & 2 & 0 \\ -i & 0 & 1 \end{pmatrix}[/mm]
>  
> [mm](A - \lambda\cdot E) \cdot \vec x_1 \ = \ \vec 0[/mm]
>
> [mm]\begin{pmatrix} 1- \lambda & 0 & i \\ 0 & 2- \lambda & 0 \\ -i & 0 & 1- \lambda \end{pmatrix}\cdot \begin{pmatrix} i \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}[/mm]
>  
> Das einzelne Produkt:
>  
> [mm]\begin{pmatrix} 1- \lambda & 0 & i \\ 0 & 2- \lambda & 0 \\ -i & 0 & 1- \lambda \end{pmatrix}\cdot \begin{pmatrix} i \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} i(1- \lambda) & 0 & i \\ 0 & 0 & 0 \\ 1 & 0 & 1- \lambda \end{pmatrix}[/mm]
>  
> Somit habe ich:
>  
> [mm]\begin{pmatrix} i(1- \lambda) & 0 & i \\ 0 & 0 & 0 \\ 1 & 0 & 1- \lambda \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}[/mm]
>  
> Wo habe ich mir hier grob vertan, bin ich überhaupt richtig
> vorgegangen?


Nun, Matrix mal Vektor gibt einen Vektor.

Siehe hier: Matrizenkalkül


>  
> Schönen Gruß,
>  Lyrone.


Gruß
MathePower

Bezug
                                
Bezug
Matrizen Eigenvektor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:02 Mi 03.06.2009
Autor: Lyrone

Hallo Mathepower,

> Siehe hier:
> Matrizenkalkül

okay, danke. Also neuer Versuch:

[mm]\begin{pmatrix} 1- \lambda & 0 & i \\ 0 & 2- \lambda & 0 \\ -i & 0 & 1- \lambda \end{pmatrix}\cdot \begin{pmatrix} i \\ 0 \\ 1 \end{pmatrix} =\begin{pmatrix} i \left(2-\lambda \right) \\ 0 \\ 2-\lambda \end{pmatrix}[/mm]

Daraus nun:

[mm]\begin{pmatrix} i(2-\lambda) \\ 0 \\ 2-\lambda \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}[/mm]

Da es einen Eigenwert von [mm]\lambda = 2[/mm] gibt ist dies dann die Rätsels Lösung?

Schönen Abend noch ...

Gruß
Lyrone.

Bezug
                                        
Bezug
Matrizen Eigenvektor: Antwort
Status: (Antwort) fertig Status 
Datum: 21:07 Mi 03.06.2009
Autor: MathePower

Hallo Lyrone,

> Hallo Mathepower,
>  
> > Siehe hier:
> >
> Matrizenkalkül
>  
> okay, danke. Also neuer Versuch:
>  
> [mm]\begin{pmatrix} 1- \lambda & 0 & i \\ 0 & 2- \lambda & 0 \\ -i & 0 & 1- \lambda \end{pmatrix}\cdot \begin{pmatrix} i \\ 0 \\ 1 \end{pmatrix} =\begin{pmatrix} i \left(2-\lambda \right) \\ 0 \\ 2-\lambda \end{pmatrix}[/mm]
>  
> Daraus nun:
>  
> [mm]\begin{pmatrix} i(2-\lambda) \\ 0 \\ 2-\lambda \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}[/mm]
>  
> Da es einen Eigenwert von [mm]\lambda = 2[/mm] gibt ist dies dann
> die Rätsels Lösung?


Ja. [ok]


>  
> Schönen Abend noch ...


Danke, gleichfalls.


>
> Gruß
>  Lyrone.


Gruß
MathePower

Bezug
                                                
Bezug
Matrizen Eigenvektor: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:48 Fr 05.06.2009
Autor: Lyrone

Hallo Mathepower,

danke für deine Hilfe!

Gruß,
Lyrone.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de