www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Matrizen mit Unbekannten
Matrizen mit Unbekannten < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizen mit Unbekannten: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:07 So 07.11.2010
Autor: Dakona

Aufgabe
Betrachte [mm] \delta_{x} [/mm] = [mm] \pmat{ 0 & 1 \\ 1 & 0 }, \delta_{y} [/mm] = [mm] \pmat{ 0 & i \\ -i & 0 }, \delta_{z}= \pmat{ 1 & 0 \\ 0 & -1 } [/mm]

a) Man Bestimme die Matrix A = [mm] \delta_{x}^{2} [/mm] + [mm] \delta_{y}^{2} [/mm] + [mm] \delta_{z}^{2} [/mm]

b) Man bestimme Eigenwerte und Eigenvektoren von [mm] \delta_{x}, \delta_{y}, \delta_{z} [/mm] und A

Es sind mehrere Fragen die ich zu dieser Aufgabenstellung habe. Wie ich Matrizen addiere ist mir bekannt, wo ich aber nicht schlau werde ist, wie ich das i behandeln muss? Weiter ist bei Frage "a" das [mm] \delta [/mm] quadriert. Was sagt mir das über das Endergebnis aus?

Bei Aufgabe "b" fehlt mir komplett der Ansatz zu dem Eigenwert und Eigenvektor :(

Schon jetzt vielen Dank für die Vorschläge.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Matrizen mit Unbekannten: Aufgabe a
Status: (Antwort) fertig Status 
Datum: 14:20 So 07.11.2010
Autor: ullim

Hi,


> a) Man Bestimme die Matrix [mm] A=\delta_{x}^{2}+\delta_{y}^{2}+\delta_{z}^{2} [/mm]
>  
> b) Man bestimme Eigenwerte und Eigenvektoren von [mm] \delta_{x}, \delta_{y}, \delta_{z} [/mm] und A

Ich geh mal davon aus das i die Imaginäre Zahl ist mit der Eigenschaft [mm] i^2=-1 [/mm]

Dann ist Aufgabe a) wie folgt zu berechnen

[mm] \delta_{x}^{2}=\delta_{x}*\delta_{x} [/mm] d.h. normale Matrizen Multiplikation

z.B. [mm] \pmat{ a_{11} & a_{12} \\ a_{21} & a_{22} }*\pmat{ b_{11} & b_{12} \\ b_{21} & b_{22} }=\pmat{ a_{11}b_{11}+a_{12}b_{21} & a_{11}b_{12}+a_{12}b_{22} \\ a_{21}b_{11}+a_{22}b_{21} & a_{21}b_{12}+a_{22}b_{22} } [/mm]

und [mm] i^2=-1 [/mm] berücksichtigen und anschließend alles addieren.



Bezug
                
Bezug
Matrizen mit Unbekannten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:40 So 07.11.2010
Autor: Dakona

Ja i = die imaginäre Einheit, aber ob diese [mm] i^2=-1 [/mm] als Eigenschaft hat steht nicht mit dabei.

Bezug
                        
Bezug
Matrizen mit Unbekannten: Antwort
Status: (Antwort) fertig Status 
Datum: 14:45 So 07.11.2010
Autor: Snarfu

Wenn i die imaginäre Einheit ist hat es diese Eigenschaft.

Bezug
        
Bezug
Matrizen mit Unbekannten: Aufgabe b)
Status: (Antwort) fertig Status 
Datum: 14:55 So 07.11.2010
Autor: Snarfu

zu b)
Du guckst z.B. auf Wapedia nach was ein Eigenwert bzw. Eigenvektor ist und wie man sie berechnet: http://wapedia.mobi/de/Eigenwert
Das wird sicher noch einige male kommen und ist recht wichtig also lohnt da ein Blick.

für [mm] $\delta_{x} =\pmat{ 0 & 1 \\ 1 & 0 }$ [/mm] sähe das dann so aus:
[mm] $0=\vmat{ \pmat{ 0 & 1 \\ 1 & 0 }-I\lambda}=\vmat{ \pmat{-\lambda,1\\1,-\lambda}}$ [/mm]
[mm] $\lambda_{1,2}=\lambda^2-1={1,-1}$ [/mm] mit dazu passenden Eigenvektoren z.B. [mm] $(1,1)^T,(-1,-1)^T$ [/mm]

Gruß!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de