www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Matrizenberechnung
Matrizenberechnung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizenberechnung: Wie ran gehen + Allg. Fragen
Status: (Frage) beantwortet Status 
Datum: 19:12 Do 17.08.2006
Autor: omahermine

Aufgabe
Gegeben sind die Matrizen

A =  [mm] \pmat{ 2 & 1 \\ 3 & 2 } [/mm] B =  [mm] \pmat{ -1 & 1 \\ 0 & -1 } [/mm] C =  [mm] \pmat{ 1 & 2 \\ 2 & 0 } [/mm]

die Bestandteil folgender Gleichungen sind: 2AX + BY = C und 3AX - 2Y = B.
Berechnen sie die Matrizen X und Y.

Hallo,

ich hätte jetzt einfach die beiden Gleichungen umgestellt nach:

X = (C - BY) * [mm] (2A)^{-1} [/mm]
X = [mm] C*(2A)^{-1} [/mm] - [mm] BY*(2A)^{-1} [/mm]

das habe ich dann in die andere Eingesetzt und probiert nach Y aufzulösen bekomme aber raus:

[mm] \pmat{ 37\bruch{1}{2} & 6 \\ -47\bruch{1}{4} & 7\bruch{1}{2} } [/mm] * Y - 2Y = [mm] \pmat{ -34 & -5 \\ 39\bruch{3}{4} & -8\bruch{1}{2} } [/mm]

Wenn ich jetzt Y ausklammer würde dort [mm] \pmat{ 37\bruch{1}{2} & 6 \\ -47\bruch{1}{4} & 7\bruch{1}{2} } [/mm] - 2 stehen und das ist doch nicht definiert oder wie rechnet man das? Ist die Vorgehensweise sonst richtig?

Noch 1 allg. Frage:

1. Darf man A*X*B = (A*B) * X rechnen, wenn A und B bekannt, X aber nicht?

        
Bezug
Matrizenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:24 Do 17.08.2006
Autor: EvenSteven


>  
> Wenn ich jetzt Y ausklammer würde dort [mm]\pmat{ 37\bruch{1}{2} & 6 \\ -47\bruch{1}{4} & 7\bruch{1}{2} }[/mm]
> - 2 stehen und das ist doch nicht definiert oder wie
> rechnet man das? Ist die Vorgehensweise sonst richtig?
>  
> Noch 1 allg. Frage:
>  
> 1. Darf man A*X*B = (A*B) * X rechnen, wenn A und B
> bekannt, X aber nicht?

Wenn du Y ausklammerst bleibt die Einheitsmatrix  stehen, dh. 2*E.
Zur allgemeinen Frage: Die Matrizen sind im allgemeinen nicht kommutativ d.h. A*B [mm] \not= [/mm] B*A Damit darfst du auch nicht die Reihenfolge deiner Matrizenmultipliation ändern. D.h. gut aufpassen auf welche Seite du ausklammerst. Zum Beispiel hast du bei der Auflösung der ersten Gleichung nach X (2*A)^(-1) auf der rechten Seite der Gleichung von rechts statt von links heranmultipliziert. Die Ideen stimmen sonst.

Gruss

EvenSteven

Bezug
                
Bezug
Matrizenberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:44 Do 17.08.2006
Autor: omahermine


> Zum Beispiel hast du bei der Auflösung der ersten Gleichung
> nach X (2*A)^(-1) auf der rechten Seite der Gleichung von
> rechts statt von links heranmultipliziert.

ich müsste also:

2AX + BY = C
2AX = C - BY
X = (2A)^-1 * (C - BY)

wenn also bei einem Produkt der Teil, den ich "kürzen" will links steht wie hier das 2A muss auf der Rechten Seite auch wieder links stehen und umgekehrt richtig?

Bezug
                        
Bezug
Matrizenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:56 Do 17.08.2006
Autor: EvenSteven


>  
> ich müsste also:
>  
> 2AX + BY = C
>  2AX = C - BY
>  X = (2A)^-1 * (C - BY)
>  
> wenn also bei einem Produkt der Teil, den ich "kürzen" will
> links steht wie hier das 2A muss auf der Rechten Seite auch
> wieder links stehen und umgekehrt richtig?

Genau [ok]! Übrigens kannst du (2*A)^(-1)=2*A^(-1) verwenden, dann hast du beim Einsetzten in die zweite Gleichung A*A^(-1)=E

Ciao

EvenSteven

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de