www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "mathematische Statistik" - Max.-Likelihoood-Schätzung
Max.-Likelihoood-Schätzung < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Max.-Likelihoood-Schätzung: Ansatz/Korrektur
Status: (Frage) beantwortet Status 
Datum: 13:41 So 05.07.2009
Autor: Torboe

Aufgabe
Die Schaltrelais einer Produktionsserie werden kurzzeitigen Belastungen ausgesetzt. Die Wahrscheinlichkeit, dass ein ein Relais der Serie eine Einzelbelastung nicht übersteht, sei p(0<p<1). Die Lebensdauer X eines Relais sei die Anzahl der überstandenen Belastungen. Die Untersuchung von 8 Relais der Serie ergab folgende Lebensdauer Werte:

120, 40, 10, 60, 10, 30, 20, 0

Man gebe eine Max. - Likelihood Schätzung für p an unter der Annahm, dass P(X=k) = [mm] p(1-p)^{k} [/mm] (geometrische Verteilung).

hallo.
mich würde mal interessieren, ob dieser rechenweg von mir stimmt:

X = X1, ..., Xn
P(X=k) = [mm] p*(1-p)^{k} [/mm]

Dichte: f(k) = F'(k) = [mm] p*k*(1-p)^{(k-1)} [/mm]

k1, ..., kn:
L(k1, ..., kn; p) = [mm] p*k1*(1-p)^{k1-1} [/mm] * ... * [mm] p*kn*(1-p)^{kn-1} [/mm] =
= p*k1* ... * kn * [mm] (1-p)^{(k1+...+kn+n)} [/mm]

logarithmieren:
Ln L = ln p + ln(k1*...*kn) + (k1+...+kn+n) * ln(1-p)

(ln L)' = 0 setzen:

[mm] \bruch{1}{p} [/mm] + [mm] \bruch{1}{1-p} [/mm] * (k1+...+kn+n) = 0

[mm] \bruch{1}{1-p}*(k1+...+kn+n) [/mm] = [mm] -\bruch{1}{p} [/mm]

(k1+....+kn+n)  = - [mm] \bruch{1-p}{p} [/mm]

p= [mm] -\bruch{1}{k1+...+kn+n} [/mm]

und jetzt noch für k1 = 120, k2 = 40, ... usw. einsetzen und ich bekommme p raus. hab ich richtig gerechnet?

danke shconmal für die antworT!!

        
Bezug
Max.-Likelihoood-Schätzung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:10 So 05.07.2009
Autor: luis52

Moin Torboe,

Irgendwie ist der Wurm in deiner Rechnung.  Fuer gegebene Beobachtungen
[mm] $k_1,\dots,k_n$ [/mm] lautet die Likelihoodfunktion

[mm] $L(p)=\prod_{i=1}^nf(k_i)=\prod_{i=1}^np(1-p)^{k_i}=p^n(1-p)^{\sum_{i=1}^nk_i}$ [/mm]

und folglich [mm] $\ln L(p)=n\ln [/mm] p+ [mm] \ln(1-p)\sum_{i=1}^nk_i$ \ldots [/mm]


vg Luis

PS: Bitte erstelle deine Anfragen mit etwas mehr Sorgfalt.    

Bezug
                
Bezug
Max.-Likelihoood-Schätzung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 16:13 So 05.07.2009
Autor: Torboe

ok. vielen dank erstmal!! hat mir schonmal sehr geholfen!

wenn ich dann die aufgabe weitermache, muss ich dann schon ln L nach p ableiten, wie gewohnt? Sprich: [mm] \bruch{d}{dp} [/mm] ln L = 0.

[mm] \Rightarrow n*\bruch{1}{p}+\bruch{1}{1-p}*(k_{1}+...+k_{2})=0 [/mm]
[mm] \Rightarrow \bruch{1}{1-p}k_{1}+...+k_{2}= -\bruch{n}{p} [/mm] :  [mm] \bruch{1}{1-p} [/mm]
[mm] \Rightarrow k_{1}+...+k_{2} [/mm] = [mm] -\bruch{n*(1-p)}{p*1} [/mm]
[mm] \Rightarrow k_{1}+...+k_{2} [/mm] = [mm] -\bruch{n-pn}{p} [/mm]

weiter komm ich leider nicht... . wie formt das weiter um?
aber zunächst mal, stimmt der weitere lösungsweg?

Bezug
                        
Bezug
Max.-Likelihoood-Schätzung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:11 So 05.07.2009
Autor: luis52


> ok. vielen dank erstmal!! hat mir schonmal sehr geholfen!

Gerne.

>  
> wenn ich dann die aufgabe weitermache, muss ich dann schon
> ln L nach p ableiten, wie gewohnt? Sprich: [mm]\bruch{d}{dp}[/mm] ln
> L = 0.
>  
> [mm]\Rightarrow n*\bruch{1}{p}+\bruch{1}{1-p}*(k_{1}+...+k_{2})=0[/mm]

[notok] Und wo bitte ist die innere Ableitung?

vg Luis

Bezug
                                
Bezug
Max.-Likelihoood-Schätzung: okey
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:22 So 05.07.2009
Autor: Torboe

abermals danke... . jaja wiedermal die sorgfalt.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de