www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Max. Flächeninhalt
Max. Flächeninhalt < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Max. Flächeninhalt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:29 Sa 12.01.2008
Autor: Harrypotter

Aufgabe
Die Kosmetikfirma Lipnature, die sich auf die Produktion von Lippenpflegeprodukten spezialisiert hat, möchte ein neues Firmenlogo entwerfen. Die PR-Abteilung der Firma schlägt dem Vorstand vor, dem neuen Firmenlogo die Form eines "kussmundes" zu verleihen. Die Funktionen dazu lauten: [mm] f_{1}(x)=-\bruch{1}{64}x^{4}+\bruch{1}{8}x^{2}+2 [/mm] und [mm] f_{2}(x)=\bruch{1}{8}x^{2}-2 [/mm]

f) Die PR-Abteilung der Kosmetikfirma schlägt vor, den Firmennamen "Lipnature" als Schriftzug so in den Kussmund zu integrieren, dass er in einem Rechteck zwischen der x-Achse und der Unterlippenrandlinie(f2) erscheint. Berechnen sie die Maße des entschprechenden Rechtecks maximalen Flächeninhalts und geben Sie zudem die Flächenmaßzahl an.

Also ich habe aus den vorherigen Teilaufgaben diese Werte herausbekommen:

Schnittpunkte zwischen f1 und f2: S1(4/0) und S2(-4/0)
Extrema von f1: HOP(0/2), TIP(4/0) und TIP(-4/0)
Wendepunkte: [mm] WEP(\wurzel{1\bruch{1}{3}} [/mm] / [mm] 2\bruch{5}{36}) [/mm]
                         [mm] WEP(-\wurzel{1\bruch{1}{3}} [/mm] / [mm] 2\bruch{5}{36}) [/mm]

Das scheint soweit auch richtig zu sein, da die Skizze aussieht wie ein Kussmund. Nun weiß ich nicht was ich bei der Aufgabe f machen soll und wie ich da vorgehe. Kann mir eventuell jemand behilflich sein?

Danke schon mal im Vorraus.

        
Bezug
Max. Flächeninhalt: Tipp
Status: (Antwort) fertig Status 
Datum: 13:02 Sa 12.01.2008
Autor: zahllos

Das Rechteck soll zwischen der x-Achse und der unteren Randfunktion liegen. Nehmen wir mal an, die rechte obere Ecke dieses Rechtecks sei im Punkt (x | 0) mit 0 < x < 4 . Dann kann man die Höhe des Rechtecks ausrechnen, indem man x in die untere Randfunktion einsetzt (Absolutbetrag nehmen!). Die Breite des Rechtecks ist dann 2x und Du kannst die Rechtecksfläche (Länge mal Breite) als Funktion von x schreiben.
(Du erhälst ein Polynom vom Grad 3). Von diesem Polynom muß Du jetzt ein Maximum mit 0 < x < 4 suchen.


Bezug
                
Bezug
Max. Flächeninhalt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:17 Sa 12.01.2008
Autor: Harrypotter

Danke schon mal für deine Antwort!

Jedoch verstehe ich nicht ganz deine Vorgehensweise, wie man zum beispiel auf eine breite von 2x kommt. Kannst du vielleicht deine Vorgehensweise näher erläutern? So dass, ich es nachvollziehen kann.

Bezug
                        
Bezug
Max. Flächeninhalt: Antwort
Status: (Antwort) fertig Status 
Datum: 13:27 Sa 12.01.2008
Autor: zahllos

Das Rechteck ist symmetrisch zur y-Achse. D.h. wenn die rechte obere Ecke in (x | 0) liegt, ist die linke obere Ecke in (-x |0) und die Breite ist
x - (-x) = 2x. Die Höhe ist dann gleich [mm] -f_2(x) [/mm]  (denn [mm] f_2(x) [/mm] ist negativ!).

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de