www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - Max/Min Winkel
Max/Min Winkel < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Max/Min Winkel: Nachprüfung
Status: (Frage) beantwortet Status 
Datum: 11:22 Sa 19.04.2008
Autor: inuma

Aufgabe
Die Gerade ga: [mm] \vec{x} [/mm] = [mm] \vektor{3 \\ 0 \\ 0} [/mm] + [mm] r\vektor{3 \\ 4 \\ t} [/mm] schneidet die x-Achse in (3|0|0). Gibt es einen min. oder max. Winkel zwischen diesen Geraden? Wenn ja geben sie ihn an.

Hallo

Meine Problem steht jaschon da oben ^^

Also hier mein Ansatz und Lösungsidee

Ich nehmen die Formel:

[mm] \alpha [/mm] = arcos [mm] \bruch{(\vec{a} * \vec{b})}{ |\vec{a}| * |\vec{b}|} [/mm]

Meine Vektoren

zum einen natürlich [mm] \vektor{3 \\ 4 \\ t} [/mm] und der andere müsste [mm] \vektor{1 \\ 0 \\ 0} [/mm] sein, da die andere Gerade die z-Achse ist

Einsetzen in die Formel

[mm] \alpha [/mm] = [mm] \bruch{3}{\wurzel{25+t²}} [/mm]  

(Die oberen beiden Vektoren werden ja skalarmultipluziert)

Wenn man t nun gegen unendlich streben lässt, (+/- ist egal , da es ja sowieso ² genommen wird) würde der untere Ausdruck immer größer werden. Arcos also immer kleiner und somit den cos immer größer.

Er nähert sich also 90  an überschreite sie aber nicht

Als BEweis mal mit 9999

[mm] \alpha [/mm] = [mm] \bruch{3}{\wurzel{25+9999²}} [/mm]

[mm] \alpha [/mm] = 89.98°

somit ist der maximal Winkel etwas unter 90° bzw. er strebt gegen 90°

Jetzt zum min

Logischerweise wird der kleinste Windekl hier erreicht wenn unter dem Bruchstrich t so klein wie möglich ist bzw 0 beträgt, sodass nur 5 unter dem Bruchstrich steht.

[mm] \alpha [/mm] = [mm] \bruch{3}{\wurzel{25+0²}} [/mm]

[mm] \alpha [/mm] = 53.13°

Ok das wären jetz meine Ideen dazu. Ich hoffe mal das sie richtig sind und bedanke mich jetzt schon für Hilfe.

MFG
inuma







        
Bezug
Max/Min Winkel: Hinweise
Status: (Antwort) fertig Status 
Datum: 11:38 Sa 19.04.2008
Autor: Loddar

Hallo inuma!


> Ich nehmen die Formel: [mm]\alpha[/mm] = arcos [mm]\bruch{(\vec{a} * \vec{b})}{ |\vec{a}| * |\vec{b}|}[/mm]

[ok]

  

> Meine Vektoren
>  
> zum einen natürlich [mm]\vektor{3 \\ 4 \\ t}[/mm] und der andere müsste [mm]\vektor{1 \\ 0 \\ 0}[/mm] sein,
> da die andere Gerade die z-Achse ist

[ok] Du meinst aber die x-Achse.



> Einsetzen in die Formel
>  
> [mm]\alpha[/mm] = [mm]\bruch{3}{\wurzel{25+t²}}[/mm]  

Hier fehlt die Winkelfunktion!

Entweder:   [mm] $\red{\cos} [/mm] \ [mm] \alpha [/mm] \ = \ [mm] \bruch{3}{\wurzel{25+t^2}}$ [/mm]

Oder:       [mm] $\alpha [/mm] \ = \ [mm] \red{\arccos}\left(\bruch{3}{\wurzel{25+t^2}}\right)$ [/mm]


> (Die oberen beiden Vektoren werden ja skalarmultipluziert)

[ok]

  

> Wenn man t nun gegen unendlich streben lässt, (+/- ist egal
> , da es ja sowieso ² genommen wird) würde der untere
> Ausdruck immer größer werden. Arcos also immer kleiner und
> somit den cos immer größer.
>  
> Er nähert sich also 90  an überschreite sie aber nicht
>  
> Als BEweis mal mit 9999
>  
> [mm]\alpha[/mm] = [mm]\bruch{3}{\wurzel{25+9999²}}[/mm]
>  
> [mm]\alpha[/mm] = 89.98°
>  
> somit ist der maximal Winkel etwas unter 90° bzw. er strebt
> gegen 90°

Die Überlegungen sind richtig. Aber dieser Winkel [mm] $\alpha_{\max}$ [/mm] wird ja nie erreicht, da es kein $t_$ gibt, um [mm] $\cos(\alpha) [/mm] \ = \ 0$ bzw. [mm] $\alpha [/mm] \ = \ 90°$ zu erreichen.

Es existiert also kein maximaler Winkel [mm] $\alpha_{\max}$ [/mm] .

  

> Jetzt zum min
>  
> Logischerweise wird der kleinste Windekl hier erreicht wenn
> unter dem Bruchstrich t so klein wie möglich ist bzw 0
> beträgt, sodass nur 5 unter dem Bruchstrich steht.
>  
> [mm]\alpha[/mm] = [mm]\bruch{3}{\wurzel{25+0²}}[/mm]
>  
> [mm]\alpha[/mm] = 53.13°

[ok]


Gruß
Loddar


Bezug
                
Bezug
Max/Min Winkel: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:43 Sa 19.04.2008
Autor: inuma

Vielen Dank

Tut mir leid, dass ich mich mit den Achsen vertan habe.

Danke, dass du mir das mit den 90 noch mal erklärt hast.

bis bald.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de