www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Maximales Volumen eines Kegels
Maximales Volumen eines Kegels < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximales Volumen eines Kegels: Aufgabe 5
Status: (Frage) beantwortet Status 
Datum: 17:30 Mi 17.11.2010
Autor: mrcp

Aufgabe
Ein Kegel soll bei einer 12cm langen Seitenkante ein möglichst großes Volumen bekommen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Tag zusammen.Ich habe diese Aufgabe in einer Klausur gestellt bekommen und soll nun eine Berichtigung dafür machen, jedoch komme ich nicht weiter.
Ich habe jetzt die Haupt- und Nebenbedingung aufgestellt:
HB: V = [mm] \bruch{1}{3} [/mm] * [mm] \pi [/mm] * r² * h
NB: 12² = r² + h²
Ich habe dann nach r² aufgelöst: r² = 144-h² = r²
Dann setze ich diese Gleichung in die HB ein:
V = [mm] \bruch{1}{3} [/mm] * [mm] \pi [/mm] (144-h²) * h

Viele werden lachen, aber ich weiß nicht wie ich weiter machen soll, wie klammer ich den Inhalt in den Klammern aus?Und was muss dann machen?
Danke im voraus
MfG

        
Bezug
Maximales Volumen eines Kegels: Hinweise
Status: (Antwort) fertig Status 
Datum: 17:38 Mi 17.11.2010
Autor: Loddar

Hallo mrcp,

[willkommenmr] !!


Das sieht soweit gut aus. Nun ist nicht "ausklammern" angesagt, sondern "ausmultiplizieren:

$V(h) \ = \ [mm] \bruch{\pi}{3}*\left(144*h-h^3\right)$ [/mm]

Bilde von dieser Funktion nun die ersten beiden Ableitungen nach $h_$ .
Anschließend berechne die Nullstellen der ersten Ableitung, indem Du $V'(h) \ = \ ... \ = \ 0$ nach $h_$ auflöst.

Dann diesen Wert in die 2. Ableitung einsetzen und überprüfen, ob es sich wirklich um ein Maximum handelt.


Gruß
Loddar


Bezug
                
Bezug
Maximales Volumen eines Kegels: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:53 Mi 17.11.2010
Autor: mrcp

So ich habe das jetzt mal versucht und würde mich über eine Rückmeldung freuen, danke schon mal im voraus:
V(h) = [mm] \bruch{144 * h * \pi}{3} [/mm] - [mm] \bruch{h³ * \pi}{3} [/mm]
     = 144h - h³

V'(h) = 144h - 3h²
V''(h) = -6h

V'(h) = 0
144 - 3h² = 0
144 = 3h²
48 = h²
[mm] \wurzel{48} [/mm] = h

V'' ( x) [mm] \not= [/mm] 0
[mm] V''(\wurzel{48}) [/mm] = -6 ( + [mm] \wurzel{48} [/mm] )
                 [mm] \approx [/mm] -41,57 -> daher handelt es sich
                                   um ein Maximum

MfG

Bezug
                        
Bezug
Maximales Volumen eines Kegels: Antwort
Status: (Antwort) fertig Status 
Datum: 19:11 Mi 17.11.2010
Autor: MathePower

Hallo mrcp,

> So ich habe das jetzt mal versucht und würde mich über
> eine Rückmeldung freuen, danke schon mal im voraus:
>  V(h) = [mm]\bruch{144 * h * \pi}{3}[/mm] - [mm]\bruch{h³ * \pi}{3}[/mm]
>    
>   = 144h - h³
>  
> V'(h) = 144h - 3h²
>  V''(h) = -6h
>  
> V'(h) = 0
>  144 - 3h² = 0
>  144 = 3h²
>  48 = h²
>  [mm]\wurzel{48}[/mm] = h


Hier muss doch stehen: [mm]h=\pm \wurzel{48}[/mm]


>  
> V'' ( x) [mm]\not=[/mm] 0
>  [mm]V''(\wurzel{48})[/mm] = -6 ( + [mm]\wurzel{48}[/mm] )
>                   [mm]\approx[/mm] -41,57 -> daher handelt es sich

> um ein Maximum


[ok]


>  
> MfG


Gruss
MathePower

Bezug
                        
Bezug
Maximales Volumen eines Kegels: schlampig aufgeschrieben
Status: (Antwort) fertig Status 
Datum: 19:17 Mi 17.11.2010
Autor: Loddar

Hallo mrcp!


>  V(h) = [mm]\bruch{144 * h * \pi}{3}[/mm] - [mm]\bruch{h³ * \pi}{3}[/mm]

[ok]


>   = 144h - h³

Wo sind denn plötzlich die Nenner sowie die [mm] $\pi$ [/mm] 's verblieben?


> V'(h) = 144h - 3h²

Auch hier fehlt obiges. Und beim ersten Term ist das $h_$ zuviel!


>  V''(h) = -6h

[ok]


Gruß
Loddar


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de