www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Maximum-Likelihood-Methode
Maximum-Likelihood-Methode < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximum-Likelihood-Methode: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:23 Mo 09.01.2012
Autor: MattiJo

Aufgabe
Sei [mm] (X_1; [/mm] ... ; [mm] X_n) [/mm] eine einfache Zufallsstichprobe. Bestimmen Sie mit der Maximum–Likelihood Methode
Punktschätzer für den Parameter [mm] \Theta, [/mm] falls [mm] X_i, [/mm] i=1, .... n die Dichte f(x; [mm] \Theta) [/mm] = [mm] \bruch{\Theta}{x^2} 1_{[\Theta, \infty)}(x), \Theta [/mm] > 0 bzw. die Dichte [mm] f(x;\Theta) [/mm] = [mm] \bruch{1}{\Theta_1} exp(\bruch{-(x-\Theta_2)}{\Theta_1}) 1_{[\Theta_2, \infty)}(x) [/mm] (wobei [mm] \Theta=(\Theta_1, \Theta_2) [/mm] mit [mm] \Theta_1 [/mm] > 0 und [mm] \Theta_2 \in \IR) [/mm] hat.


Hallo,

wie komme ich bei obigen Dichten auf die (Log-)Likelihoodfunktion, damit ich die Maximum-Likelihood-Methode anwenden kann?

In den Hinweisen habe ich meine bisherigen Stand notiert, wo ich genau hänge.

        
Bezug
Maximum-Likelihood-Methode: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:52 Mo 09.01.2012
Autor: MattiJo

mein Ansatz:

[mm] L(\Theta) [/mm] = [mm] f(x_1,\Theta) \cdot f(x_2,\Theta) \cdot [/mm] ... [mm] \cdot f(x_n,\Theta) [/mm]

= [mm] \bruch{\Theta}{x_1} \cdot \bruch{\Theta}{x_2} \cdot [/mm] ... [mm] \cdot \bruch{\Theta}{x_n} [/mm]

= [mm] \bruch{\Theta^n}{\produkt_{i=1}^{n} x_i^2} [/mm]

Wenn ich jetzt die Loglikelihoodfunktion bestimme, komme ich auf

ln L = ln [mm] (\bruch{\Theta^n}{\produkt_{i=1}^{n} x_i^2}) [/mm] = n [mm] ln(\Theta) [/mm] - [mm] \summe_{i=1}^{n}ln (x_i^2) [/mm] = n [mm] ln(\Theta) [/mm] - 2 [mm] \summe_{i=1}^{n}ln (x_i) [/mm]

Nun bestimme ich das Extremum von [mm] \Theta: [/mm]

[mm] \bruch{\partial ln L}{\partial \Theta} [/mm] = [mm] \bruch{n}{\Theta} [/mm] = 0

Soll ich dann [mm] \hat \Theta [/mm] als [mm] \infty [/mm] schätzen oder wie gehe ich vor?

Bezug
        
Bezug
Maximum-Likelihood-Methode: Antwort
Status: (Antwort) fertig Status 
Datum: 14:18 Mo 09.01.2012
Autor: luis52

Moin,

die (Log-)Likelihoodfunktion besitzt ein Randmaximum. Du kommst
folglich mit Differentiation nicht ans Ziel.

vg Luis

Bezug
                
Bezug
Maximum-Likelihood-Methode: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:31 Mo 09.01.2012
Autor: MattiJo

Wie kann ich dann vorgehen, um einen Schätzer zu erhalten?

Bezug
                        
Bezug
Maximum-Likelihood-Methode: Antwort
Status: (Antwort) fertig Status 
Datum: 14:49 Mo 09.01.2012
Autor: luis52

Moin,

vielleicht kannst du hier etwas Honig saugen...

vg Luis

Bezug
                                
Bezug
Maximum-Likelihood-Methode: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:05 Mo 09.01.2012
Autor: MattiJo

Vielen Dank für die Anregung!
Ist dann hier [mm] \hat \Theta [/mm] = [mm] max(X_1,...,X_n) [/mm] ?

Bezug
                                        
Bezug
Maximum-Likelihood-Methode: Antwort
Status: (Antwort) fertig Status 
Datum: 15:32 Mo 09.01.2012
Autor: luis52


> Vielen Dank für die Anregung!
>  Ist dann hier [mm]\hat \Theta[/mm] = [mm]max(X_1,...,X_n)[/mm] ?

Nein, das Minimum.

Bei der zweiten Verteilung koennte es etwas trickreicher werden...

vg Luis



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de