www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Maximum Likelihood
Maximum Likelihood < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximum Likelihood: Intuitiver Ansatz
Status: (Frage) beantwortet Status 
Datum: 19:59 So 05.05.2013
Autor: clemenum

Aufgabe
Eine Zahl $X$ werde aus [mm] $\{1,2,\ldots, M \}$ [/mm] gemäß Gleichverteilung [mm] $P_M$ [/mm] ausgewählt, d.h., es gelte $P(X=k) = [mm] \frac{1}{M}, [/mm] k= [mm] 1,2,\ldots, [/mm] M $
[mm] $M\in \mathbb{N}$ [/mm] sei unbekannt. Bestimmen Sie unter der Voraussetzung , dass $X=x$ gewählt wird, einen Maximum-Likelihood-Schätzer für $M$!

Nun, hier habe ich es ja mit einer Gleichverteilung zu tun. Der Erwartungswert ist hier offenbar $E[X] = (1 + M) [mm] \cdot \frac{1}{2}.$ [/mm] D.h. wenn $X=x$ gilt, wird wohl $M$ bei ziemlich genau $2x$ liegen.
Meine Frage an euch: Wie kann ich das präziser aufschreiben? Kann mir da jemand vielleicht helfen? :)

(Ich sollte vielleicht anmerken, dass wir uns am Anfang der Wahrscheinlichkeitstheorievorlesung befinden und das eher als Übung zur exakten Formulierung der Intuition gilt als als Punktesammlung für die Klausurzulassung. )

Das ist eigentlich recht komisch, es ist ja jede Zahl gleich wahrscheinlich. Doch ist ja bei jeder Gleichverteilung, die zu erwartende Zahl beim Mittelwert (klingt paradox, nicht?).

        
Bezug
Maximum Likelihood: Antwort
Status: (Antwort) fertig Status 
Datum: 20:31 So 05.05.2013
Autor: Teufel

Hi!

Das, was du gemacht hast ist aber kein Maximum-Likelihood-Schätzer (MLS)! Du hast ja nicht die Likelihoodfunktion maximiert.

Erst einmal musst du das ganze vernünftig modellieren. Der Stichprobenraum ist z.B. [mm] \IN, [/mm] weil du bei der Durchführung des Experimentes eine natürliche Zahl siehst. (Die Sigmaalgebra kann man als Potenzmenge nehmen.) Und die Wahrscheinlichkeitsverteilung ist durch [mm] P_M(x)=\frac{1}{M}1_{\{1, \ldots, M\}}(x) [/mm] gegeben.

Jetzt musst du die Likelihoodfunktion aufstellen. Diese ist auch einfach nur $f(M, [mm] x)=\frac{1}{M}1_{\{1, \ldots, M\}}(x)$. [/mm] Sei nun x fest, d.h. du hast x beobachtet. Jetzt musst du M so wählen, dass [mm] \frac{1}{M}1_{\{1, \ldots, M\}}(x) [/mm] maximal wird.

Versuche mal den Wert für M herauszufinden!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de