www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Maximum und Minimum bestimmen
Maximum und Minimum bestimmen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximum und Minimum bestimmen: Idee
Status: (Frage) beantwortet Status 
Datum: 11:16 Sa 06.08.2011
Autor: kalifat

Aufgabe
[mm] f(x,y)=ax^2+2bxy+cy^2. [/mm] Bestimme Maximum und Minimum von f auf dem Einheitskreis [mm] x^2+y^2-1=0 [/mm]

Ich habe mir überlegt ich wende die Lagrange'schen Multiplikatorenregeln an.
Daraufhin erhalte ich folgendes Gleichungssystem

[mm] ax+by=\lambda [/mm] x
[mm] bx+cy=\lambda [/mm] y
[mm] x^2+y^2-1=0 [/mm]

Wenn ich das nach x, y und [mm] \lambda [/mm] auflöse kommt bei mir irgendwas heraus. Habt ihr vielleicht eine bessere Idee zur Berechnung der Extremwerte oder habe ich mich irgendwo verrechnet?

        
Bezug
Maximum und Minimum bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:25 Sa 06.08.2011
Autor: kamaleonti

Moin kalifat,
> [mm]f(x,y)=ax^2+2bxy+cy^2.[/mm] Bestimme Maximum und Minimum von f
> auf dem Einheitskreis [mm]x^2+y^2-1=0[/mm]
>  Ich habe mir überlegt ich wende die Lagrange'schen
> Multiplikatorenregeln an.
> Daraufhin erhalte ich folgendes Gleichungssystem
>  
> [mm]ax+by=\lambda[/mm] x
>  [mm]bx+cy=\lambda[/mm] y
>  [mm]x^2+y^2-1=0[/mm]

[ok]

>  
> Wenn ich das nach x, y und [mm]\lambda[/mm] auflöse kommt bei mir
> irgendwas heraus. Habt ihr vielleicht eine bessere Idee zur
> Berechnung der Extremwerte oder habe ich mich irgendwo verrechnet?

Die Methode der Lagrange Multiplikatoren ist wohl die gängigste.

Alternativ könntest du die Gleichung [mm] x^2+y^2=1 [/mm] nach einer Variablen auflösen und in f einsetzen. Dann erhältst du eine eindimensionale Funktion, weiter ginge es mit der üblichen Extremumsbestimmung. Ich empfehle das aber nicht, denn das Auflösen der impliziten Gleichung nach einer Variable ist nicht eindeutig möglich, was unangenehme Fallunterscheidungen mit sich bringt.

LG


Bezug
                
Bezug
Maximum und Minimum bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:32 Sa 06.08.2011
Autor: kalifat

Ok, wenn ich dieses Gleichungssystem in Mathematica eingebe kommen für die Variabeln extrem lange Ausdrücke dabei heraus, diese weden doch wohl kaum die Lösungen sein.

Bezug
                        
Bezug
Maximum und Minimum bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:35 Sa 06.08.2011
Autor: kalifat

Hat niemand eine Idee?

Bezug
                        
Bezug
Maximum und Minimum bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:42 Sa 06.08.2011
Autor: fred97

Sei [mm] A:=\pmat{ a & b \\ b & c } [/mm]


Die 3 Gleichungen

  
$ [mm] ax+by=\lambda [/mm] $ x
$ [mm] bx+cy=\lambda [/mm] $ y
$ [mm] x^2+y^2-1=0 [/mm] $

bedeuten:


[mm] \lambda [/mm] ist ein Eigenwert der symm. Matrix A und [mm] \vektor{x \\ y} [/mm] ist ein zugeh. normierter Eigenvektor.

FRED


Bezug
                                
Bezug
Maximum und Minimum bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:45 Sa 06.08.2011
Autor: kalifat

Danke für die Info. Wie schaut aber das Max und Min. explizit aus?

Bezug
                                        
Bezug
Maximum und Minimum bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:58 Sa 06.08.2011
Autor: blascowitz

Hallo


Berechne dazu zunächst die Eigenwerte und dazugehörigen EV der symmetrischen Matrix $ [mm] A:=\pmat{ a & b \\ b & c } [/mm] $

Dann sind die dazu gehörenden Eigenvektoren, wenn man sie normiert, deine Kandidaten fürs Extremum

Viele Grüße


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de