www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Maximumberechnung
Maximumberechnung < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximumberechnung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:33 Fr 11.06.2004
Autor: baerchen

Hallo ihr Lieben!


Ich brauche mal wieder Hilfe.


Meine Aufgabe für die mir der Denkansatz fehlt lautet:
„Für welches r ist P(E2) maximal?“


Ich weiß, dass ich zum Maximumausrechnen die 1. Ableitung bilden muss und die dann gleich 0 zu setzen habe. Doch von welchem/n r soll ich die bilden?


Um mich zu verstehen braucht ihr höchstwahrscheinlich die gesamte Aufgabe :)
Wir haben ein Glücksrad mit drei Feldern, grün, rot und blau.
g = 2r ; r = r; b = 1- 3r

E2: Genau einmal Grün.


E2 habe ich schon ausgerechnet: E2 = 4r – [mm] 8r^2 [/mm]

Die einzelnen, vier, Pfade (Baumdiagramm) von E2 lauten:
(1 – 3r) * 2r = 2r – [mm] 6r^2 [/mm]
2r * (1-3r) = 2r – 6 [mm] r^2 [/mm]
2r * r = [mm] 2r^2 [/mm]
r * 2r = [mm] 2r^2 [/mm]


Über Hilfe wäre ich sehr dankbar.

Liebe Grüße


        
Bezug
Maximumberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:48 Fr 11.06.2004
Autor: Julius

Liebes baerchen!

> Ich brauche mal wieder Hilfe.

Kein Problem! :-)
  

> Meine Aufgabe für die mir der Denkansatz fehlt lautet:
>
> „Für welches r ist P(E2) maximal?“
>  
>
> Ich weiß, dass ich zum Maximumausrechnen die 1. Ableitung
> bilden muss und die dann gleich 0 zu setzen habe. Doch von
> welchem/n r soll ich die bilden?
>
>
> Um mich zu verstehen braucht ihr höchstwahrscheinlich die
> gesamte Aufgabe :)
>  Wir haben ein Glücksrad mit drei Feldern, grün, rot und
> blau.
>  g = 2r ; r = r; b = 1- 3r
>  
> E2: Genau einmal Grün.
>  
>
> E2 habe ich schon ausgerechnet: E2 = 4r – [mm] 8r^2 [/mm]

Du meinst:

[mm]P(E2) = 4r-8r^2[/mm]

Ja, das ist richtig! [ok]

> Die einzelnen, vier, Pfade (Baumdiagramm) von E2 lauten:
>
> (1 – 3r) * 2r = 2r – [mm] 6r^2 [/mm]
>  2r * (1-3r) = 2r – 6 [mm] r^2 [/mm]
>  2r * r = [mm] 2r^2 [/mm]
>  r * 2r = [mm] 2r^2 [/mm]

[ok]

Nun weißt du, dass $P(E2)$ eine Funktion von $r$ ist. Ich bezeichne diese Funktion mal mit $f$. Daher gilt:

$P(E2) = f(r) = [mm] 4r-8r^2$. [/mm]

Von dieser Funktion musst du nun das Maximum bestimmen, wie du das bereits kennst.

Melde dich doch einfach noch einmal mit einem Vorschlag. :-)

Liebe Grüße
Julius

Bezug
                
Bezug
Maximumberechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:13 Fr 11.06.2004
Autor: baerchen

Hallo Julius!


Jetzt verstehe ich die Frage :)

P(E2) ist für r = 0,25 maximal.


Die erste Ableitung lautet: 4 - 16r

also: 0 = 4 - 16 r
16r = 4
r = 4/16
r = 0,25


Ich hoffe das ist richtig.

Herzlichen Dank für deine schnelle Hilfe.

Viele Grüße

Bezug
                        
Bezug
Maximumberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:16 Fr 11.06.2004
Autor: Julius

Liebes Baerchen!

Du bist die Beste! [anbet]

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de