www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Maximums-/Minimumsprinzip
Maximums-/Minimumsprinzip < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximums-/Minimumsprinzip: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:55 Di 14.06.2011
Autor: Rubstudent88

Aufgabe
Es seien U [mm] \subset \IC [/mm] ein Gebiet und f [mm] \in \mathcal{O}(U) [/mm] nicht konstant. Weiterhin sei [mm] z_{0} \in \U [/mm] ein Minimum von |f|. Zeigen Sie: [mm] f(z_{0})=0. [/mm]

Hallo liebes matheforum,

ich wäre um eure Hilfe bei obiger Aufgabe dankbar. [mm] \mathcal{O} [/mm] ist bei uns die Algebra der holomorphen Funktionen.

Die obige Aufgabe riecht ja praktisch nach dem Maximums-/Minimumsprinzip, daher will ich diese Aussage nutzen: f: G [mm] \to \IC [/mm] holomorph, [mm] z_{0} \in [/mm] U [mm] \subset [/mm] G offen, [mm] |f(z_{0})| \le [/mm] |f(z)|und f(z) [mm] \not= [/mm] 0 [mm] \forall [/mm] z [mm] \in [/mm] U [mm] \Rightarrow [/mm] f ist konstant.

In der Aufgabe ist f zwar holomorph, aber nicht konstant, [mm] z_{0} [/mm] ist aber ein Minimum von |f|, d.h. für das Minimumsprinzip ist praktisch fast alles erfüllt, trotzdem ist f konstant. , deswegen kann f(z) [mm] \not= [/mm] 0 [mm] \forall [/mm] z nicht erfüllt sein.

[mm] \Rightarrow f(z_{0})=0. [/mm]

Ist das soweit richtig und nachvollziehbar oder muss ich einen anderen Ansatz wählen?

Beste Grüße


        
Bezug
Maximums-/Minimumsprinzip: Antwort
Status: (Antwort) fertig Status 
Datum: 19:13 Di 14.06.2011
Autor: rainerS

Hallo!

> Es seien U [mm]\subset \IC[/mm] ein Gebiet und f [mm]\in \mathcal{O}(U)[/mm]
> nicht konstant. Weiterhin sei [mm]z_{0} \in \U[/mm] ein Minimum von
> |f|. Zeigen Sie: [mm]f(z_{0})=0.[/mm]
>  Hallo liebes matheforum,
>  
> ich wäre um eure Hilfe bei obiger Aufgabe dankbar.
> [mm]\mathcal{O}[/mm] ist bei uns die Algebra der holomorphen
> Funktionen.
>  
> Die obige Aufgabe riecht ja praktisch nach dem
> Maximums-/Minimumsprinzip, daher will ich diese Aussage
> nutzen: f: G [mm]\to \IC[/mm] holomorph, [mm]z_{0} \in[/mm] U [mm]\subset[/mm] G
> offen, [mm]|f(z_{0})| \le[/mm] |f(z)|und f(z) [mm]\not=[/mm] 0 [mm]\forall[/mm] z [mm]\in[/mm]
> U [mm]\Rightarrow[/mm] f ist konstant.
>  
> In der Aufgabe ist f zwar holomorph, aber nicht konstant,
> [mm]z_{0}[/mm] ist aber ein Minimum von |f|, d.h. für das
> Minimumsprinzip ist praktisch fast alles erfüllt, trotzdem
> ist f konstant. , deswegen kann f(z) [mm]\not=[/mm] 0 [mm]\forall[/mm] z
> nicht erfüllt sein.
>  
> [mm]\Rightarrow f(z_{0})=0.[/mm]

Im Prinzip ist das richtig, aber etwas ungenau argumentiert. Erstens wirfst du die Symbole U und G durcheinander: in der Aufgabe ist U das Symbol für das Gebiet, nicht G.

Abgesehen davon kann es in einer beliebigen Umgebung U von [mm] $z_0$ [/mm] noch weitere Minima geben, d.h. es folgt zunächst einmal nur, dass es einen Punkt [mm] $z_1\in [/mm] U$ gibt, sodass [mm] $f(z_1)=0$. [/mm] Du musst also garantieren, dass [mm] $z_0$ [/mm] das einzige Minimum in U ist, erst dann kannst du folgern, dass [mm] $f(z_0)=0$ [/mm] ist.

Viele Grüße
   Rainer


Bezug
        
Bezug
Maximums-/Minimumsprinzip: Antwort
Status: (Antwort) fertig Status 
Datum: 08:13 Mi 15.06.2011
Autor: fred97

Nimm an, es sei [mm] f(z_0) \ne [/mm] 0. Dann ex. eine offene Umgebung V von [mm] z_0 [/mm] mit V [mm] \subseteq [/mm] U und f(z) [mm] \ne [/mm] 0 für jedes z [mm] \in [/mm] V.

Für z [mm] \in [/mm] V setze g(z):=1/f(z). Wende auf g das Max.-Prinzip an.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de