www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Mehrdimensionale Funktion abl.
Mehrdimensionale Funktion abl. < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mehrdimensionale Funktion abl.: Korrektur, Idee
Status: (Frage) beantwortet Status 
Datum: 17:08 Mo 14.07.2008
Autor: Leipziger

Aufgabe
Berechnen Sie die Ableitung $ [mm] \bruch{\partial^{2}F}{\partial t^{2}} [/mm] $
der wie folgt definierten Funktion:
F(t) := $ [mm] f(x_{1}(t); x_{2}(t)) [/mm] $
Voraussetzung: f : $ [mm] \IR² \to \IR [/mm] $ und $ [mm] x_{1}; x_{2} [/mm] $ : $ [mm] \IR \to [/mm] $ R zweimal stetig differenzierbar

Die 1. Ableitung ist ja

F'(t) = $ [mm] \bruch{\partial f}{\partial x_{1}} \bruch{\partial x_{1}}{\partial t} +\bruch{\partial f}{\partial x_{2}} \bruch{\partial x_{2}}{\partial t} [/mm] $

wäre dann die 2.
F''(t)=
$ [mm] \bruch{\partial² f}{\partial x_{1}²} [/mm] * [mm] x_{2}(t) [/mm] * [mm] x_{2}(t) [/mm] * [mm] x_{1}'(t) [/mm] $ + $ [mm] \bruch{\partial f}{\partial x_{1}} [/mm] * [mm] x_{2}(t) [/mm] * [mm] x_{1}''(t) [/mm] $ + $ [mm] \bruch{\partial² f}{\partial x_{2}²} [/mm] * [mm] x_{1}(t) [/mm] * [mm] x_{1}(t) [/mm] * [mm] x_{2}'(t) [/mm] $  + $ [mm] \bruch{\partial f}{\partial x_{2}} [/mm] * [mm] x_{1}(t) [/mm] * [mm] x_{2}''(t) [/mm] $

oder hab ich da was falsch gemacht? Muss sagen den überblick da zu behalten ist nicht ganz einfach :)

        
Bezug
Mehrdimensionale Funktion abl.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:29 Mo 14.07.2008
Autor: Leipziger

Ist das zu unübersichtlich? Oder einfach schlichtweg falsch?
Ich überleg nun schon den ganzen tag und komm da nicht voran, wäre nett wenn mir einer helfen könnte!

mfg leipziger

Bezug
        
Bezug
Mehrdimensionale Funktion abl.: Antwort
Status: (Antwort) fertig Status 
Datum: 19:45 Mo 14.07.2008
Autor: leduart

Hallo
> Berechnen Sie die Ableitung [mm]\bruch{\partial^{2}F}{\partial t^{2}}[/mm]
>  
> der wie folgt definierten Funktion:
>  F(t) := [mm]f(x_{1}(t); x_{2}(t))[/mm]
>  Voraussetzung: f : [mm]\IR² \to \IR[/mm]
> und [mm]x_{1}; x_{2}[/mm] : [mm]\IR \to[/mm] R zweimal stetig
> differenzierbar
>  Die 1. Ableitung ist ja
>  
> F'(t) = [mm]\bruch{\partial f}{\partial x_{1}} \bruch{\partial x_{1}}{\partial t} +\bruch{\partial f}{\partial x_{2}} \bruch{\partial x_{2}}{\partial t}[/mm]
>  
> wäre dann die 2.
>   F''(t)=
>  [mm]\bruch{\partial² f}{\partial x_{1}²} * x_{2}(t) * x_{2}(t) * x_{1}'(t)[/mm]
> + [mm]\bruch{\partial f}{\partial x_{1}} * x_{2}(t) * x_{1}''(t)[/mm]
> + [mm]\bruch{\partial² f}{\partial x_{2}²} * x_{1}(t) * x_{1}(t) * x_{2}'(t)[/mm]
>  + [mm]\bruch{\partial f}{\partial x_{2}} * x_{1}(t) * x_{2}''(t)[/mm]
>  
> oder hab ich da was falsch gemacht? Muss sagen den
> überblick da zu behalten ist nicht ganz einfach :)

ich versteh nicht ganz, woher du die ganzen Faktoren x1 und x2 ohne Punkt hast.
Geh einfach systematisch wie bei der ersten Ableitung vor:
[mm] f''(t)=\bruch{\partial f}{\partial t}(F'(t) [/mm]
dabei rechnest du mit der Produktregel
[mm] \bruch{\partial }{\partial t}(\bruch{\partial f}{\partial x_{1}*x_1'(t)}=\bruch{\partial f^2}{\partial x_{1}^2}*x_1'^2+\bruch{\partial f}{\partial x_{1}}*x_1''(t)+\bruch{\partial f^2}{\partial x_{1}\partial x_{2}}*x_1'(t)*x_2'(t)+ [/mm] jetzt noch dasselbe mit Ableitung nach [mm] x_2. [/mm]
Gruss leduart

Bezug
                
Bezug
Mehrdimensionale Funktion abl.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:06 Mo 14.07.2008
Autor: Leipziger

Dankeschön für die Antwort, sieht auch etwas geordneter aus als mein "Geistesblitz" :)

Leipziger

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de