www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Mehrfachanw. d Differentiation
Mehrfachanw. d Differentiation < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mehrfachanw. d Differentiation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:14 Mo 02.01.2012
Autor: dodo4ever

Guten Abend Matheraum...

Ich habe leider ein kleines Problem mit folgender Aufgabe, bzw. reicht es mir zu erfahren, ob ich an diese Aufgabe richtig rangehe.

Gegeben ist zunächst einmal folgende Aufgabenstellung:
Es sei [mm] \varphi:\IR^3 \to \IR [/mm] eine zweimal stetig differenzierbare Lösung der Laplaceschen DGL [mm] \Delta\varphi=0 [/mm] und [mm] \vec{v}=\nabla \varphi. [/mm] Es sind [mm] div\vec{v} [/mm] und [mm] rot\vec{v} [/mm] zu berechnen.

Zunächst schreibe ich für [mm] \varphi:\IR^3 \to \IR [/mm] folgendes auf: [mm] \varphi=(\varphi_1, \varphi_2, \varphi_3) [/mm]

Die Schreibweise [mm] \vec{v}=\nabla \varphi [/mm] steht ja für nichts anderes als [mm] \vec{v}=grad \varphi. [/mm]

Also schreibe ich weiterhin: [mm] \vec{v}=\nabla \varphi=grad \varphi=\vektor{\bruch{\partial}{\partial x}\varphi_1 \\ \bruch{\partial}{\partial y}\varphi_2 \\ \bruch{\partial}{\partial z}\varphi_3} [/mm]

Somit sollte sich ja dann eigentlich für [mm] div(grad\vec{v}) [/mm] folgendes ergeben: [mm] div(\vec{v})=div(\nabla \varphi)=div(grad \varphi)=\bruch{\partial}{\partial x}\bruch{\partial}{\partial x} \varphi_1+\bruch{\partial}{\partial y}\bruch{\partial}{\partial y} \varphi_2+\bruch{\partial}{\partial z}\bruch{\partial}{\partial z} \varphi_3=\bruch{\partial^2}{\partial x^2}\varphi_1+\bruch{\partial^2}{\partial y^2}\varphi_2+\bruch{\partial^2}{\partial z^2}\varphi_3 [/mm]

Bevor ich mich nun an [mm] rot\vec{v} [/mm] ranschmeiße wollte ich mir zunächst einmal folgende Fragen stellen...

Wie genau kann ich den Satz:
Es sei [mm] \varphi:\IR^3 \to \IR [/mm] eine zweimal stetig differenzierbare Lösung der Laplaceschen DGL [mm] \Delta\varphi=0 [/mm] und [mm] \vec{v}=\nabla \varphi [/mm] verstehen???

Ist das vorgehen, wie ich es gemacht habe prinzipiell richtig oder habt ihr was zu meckern???

Ich danke vielmals für euer Engagement und für eure Hilfe.

mfg dodo4ever

        
Bezug
Mehrfachanw. d Differentiation: Antwort
Status: (Antwort) fertig Status 
Datum: 21:34 Mo 02.01.2012
Autor: leduart

Hallo
du hast bisher $ [mm] \Delta\varphi=0 [/mm] $ nicht benutzt! was ist den [mm] \Delta\varphi [/mm] ausgeschrieben?
warum nicht direkt $ [mm] \nabla *\nabla [/mm]  $ und [mm] \nabla \times \nabla [/mm] berechnen?
aber richtig ist, was du bisher gemacht hast.
Gruss leduart

Bezug
                
Bezug
Mehrfachanw. d Differentiation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:27 Di 03.01.2012
Autor: dodo4ever

Hallo leduart und vielen Dank für deine Hilfe...

[mm] \Delta \varphi [/mm] ausgeschrieben ergibt [mm] div(grad\varphi)=\bruch{\partial^2}{\partial x^2}\varphi_1+\bruch{\partial^2}{\partial y^2}\varphi_2+\bruch{\partial^2}{\partial z^2}\varphi_3 [/mm] und das sollte laut Aufgabenstellung 0 sein.

Also [mm] div(grad\varphi)=\bruch{\partial^2}{\partial x^2}\varphi_1+\bruch{\partial^2}{\partial y^2}\varphi_2+\bruch{\partial^2}{\partial z^2}\varphi_3 [/mm]

Berechnet werden sollte aber [mm] div\vec{v}. [/mm] Deshalb war ich nicht sicher, ob ich das auf direktem Wege machen kann.

Du schreibst ich habe [mm] \Delta \varphi=0 [/mm] bisher nicht angewendet. Ich gehe also davon aus, dass die Aufgabe noch nicht fertig ist. Wie kann ich [mm] \Delta \varphi=0 [/mm] anwenden???

Es gilt ja eigentlich [mm] \Delta \varphi=0 [/mm] mit [mm] \Delta \varphi=div(grad\varphi)=\bruch{\partial^2}{\partial x^2}\varphi_1+\bruch{\partial^2}{\partial y^2}\varphi_2+\bruch{\partial^2}{\partial z^2}\varphi_3 [/mm]

Und es gilt div [mm] \vec{v}=div(\nabla\varphi)=div(grad\varphi)=div(grad\varphi)=\bruch{\partial^2}{\partial x^2}\varphi_1+\bruch{\partial^2}{\partial y^2}\varphi_2+\bruch{\partial^2}{\partial z^2}\varphi_3 [/mm]

Also steht ja eigentlich geschrieben:

[mm] \Delta \varphi=div \vec{v}=div(\nabla\varphi)=div(grad\varphi)=\bruch{\partial^2}{\partial x^2}\varphi_1+\bruch{\partial^2}{\partial y^2}\varphi_2+\bruch{\partial^2}{\partial z^2}\varphi_3=0 [/mm]

So würde ich das jetzt anwenden...

mfg und thanks for your help dodo4ever

Bezug
                        
Bezug
Mehrfachanw. d Differentiation: Antwort
Status: (Antwort) fertig Status 
Datum: 15:13 Di 03.01.2012
Autor: MatthiasKr

Hallo,

also du hast [mm] $\Delta \varphi=0$ [/mm] und ausserdem [mm] $v=\nabla \varphi$. [/mm] leduart wollte dich darauf hinweisen, dass der laplace-operator eigentlich die divergenz des gradienten ist und somit

[mm] $0=\Delta \varphi=\nabla\cdot\nabla \varphi =\nabla\cdot [/mm] v$

du kannst also ohne jegliche rechnung folgern, dass die divergenz des gradienten-feldes v gleich null ist.

weiterhin gibt es noch eine schöne identität für die rotation von gradienten-feldern. falls diese dir nicht bekannt ist, einfach mal die definition hinschreiben...

gruss
matthias



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de