www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Mehrfachintegral
Mehrfachintegral < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mehrfachintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:36 Mi 28.11.2012
Autor: sissile

Aufgabe
Man berechne [mm] \int_{[0,1] \times \IR} e^{-|x-y|} [/mm] d(x,y)
indem man zuerst nach x integriert

Hallo die Lösung habe ich bereits.
Ich verstehe nicht wieso man das Integral genauso aufteilt:
[mm] \int_{[0,1] \times \IR} e^{-|x-y|} [/mm] d(x,y) = [mm] \int_{-\infty}^0 \int_0^1 e^{-x+y} [/mm] d(x,y] + [mm] \int_0^1 \int_0^1 e^{- |x-y|} [/mm] d(x,y) + [mm] \int_1^\infty \int_0^1 e^{x-y} [/mm] d(x,y)
WIe komme ich auf diese "Unterteilung"??

        
Bezug
Mehrfachintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 18:02 Mi 28.11.2012
Autor: MathePower

Hallo sissile,

> Man berechne [mm]\int_{[0,1] \times \IR} e^{-|x-y|}[/mm] d(x,y)
>  indem man zuerst nach x integriert
>  Hallo die Lösung habe ich bereits.
>  Ich verstehe nicht wieso man das Integral genauso
> aufteilt:
>  [mm]\int_{[0,1] \times \IR} e^{-|x-y|}[/mm] d(x,y) =
> [mm]\int_{-\infty}^0 \int_0^1 e^{-x+y}[/mm] d(x,y] + [mm]\int_0^1 \int_0^1 e^{- |x-y|}[/mm]
> d(x,y) + [mm]\int_1^\infty \int_0^1 e^{x-y}[/mm] d(x,y)
>  WIe komme ich auf diese "Unterteilung"??


Betrachte [mm]x-y[/mm].

[mm]x-y[/mm] ist für [mm]y \le 0[/mm] stets [mm]\ge 0[/mm]

[mm]x-y[/mm] ist für [mm]y \ge 1[/mm] stets [mm]\le 0[/mm]

Für den fehlenden Bereich ist der Betrag zu nehmen,
wobei dieser auch wieder aufgeteilt werden kann.


Gruss
MathePower





Bezug
                
Bezug
Mehrfachintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:10 Mi 28.11.2012
Autor: sissile


> Betrachte $ x-y $.

> $ x-y $ ist für $ y [mm] \le [/mm] 0 $ stets $ [mm] \ge [/mm] 0 $

> $ x-y $ ist für $ y [mm] \ge [/mm] 1 $ stets $ [mm] \le [/mm] 0 $


Okay was wäre wenn wir das integral:
$ [mm] \int_{[0,1] \times \IR} e^{-|x+y|} [/mm] $
Betrachte x+y
x+y ist für y [mm] \ge [/mm] 0 stets [mm] \ge [/mm] 0
x+y ist für y [mm] \le [/mm] -1 stets [mm] \le [/mm] 0
OdeR?
LG

Bezug
                        
Bezug
Mehrfachintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 18:13 Mi 28.11.2012
Autor: fred97


> > Betrachte [mm]x-y [/mm].
>  
> > [mm]x-y[/mm] ist für [mm]y \le 0[/mm] stets [mm]\ge 0[/mm]
>  
> > [mm]x-y[/mm] ist für [mm]y \ge 1[/mm] stets [mm]\le 0[/mm]
>  
>
> Okay was wäre wenn wir das integral:
>  [mm]\int_{[0,1] \times \IR} e^{-|x+y|}[/mm]




Wie kommst du plötzlich auf [mm] e^{-|x+y|} [/mm] ?????

FRED

>  Betrachte x+y
>  x+y ist für y [mm]\ge[/mm] 0 stets [mm]\ge[/mm] 0
>  x+y ist für y [mm]\le[/mm] -1 stets [mm]\le[/mm] 0
>  OdeR?
>  LG


Bezug
                                
Bezug
Mehrfachintegral: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:15 Mi 28.11.2012
Autor: sissile

Hallo
Hat nichts mit dem Bsp zu tun, wollte nur ein ähnliches Bsp geben um das selbst nachvollziehen zu können

Bezug
                        
Bezug
Mehrfachintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 18:52 Mi 28.11.2012
Autor: MathePower

Hallo sissile,

> > Betrachte [mm]x-y [/mm].
>  
> > [mm]x-y[/mm] ist für [mm]y \le 0[/mm] stets [mm]\ge 0[/mm]
>  
> > [mm]x-y[/mm] ist für [mm]y \ge 1[/mm] stets [mm]\le 0[/mm]
>  
>
> Okay was wäre wenn wir das integral:
>  [mm]\int_{[0,1] \times \IR} e^{-|x+y|}[/mm]
>  Betrachte x+y
>  x+y ist für y [mm]\ge[/mm] 0 stets [mm]\ge[/mm] 0
>  x+y ist für y [mm]\le[/mm] -1 stets [mm]\le[/mm] 0
>  OdeR?


Das ist richtig. [ok]


>  LG


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de