www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Mehrfachintegrale Zylinderkoor
Mehrfachintegrale Zylinderkoor < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mehrfachintegrale Zylinderkoor: Aufgabe
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:26 So 22.03.2015
Autor: Robienchen

Aufgabe
Gegeben ist ein Zylinder mit [mm] \Omega [/mm] = [mm] \{\overrightarrow{x}(r,\phi,z) : r < 1, \phi \in [0, 2\pi), z \in (0,2]\} [/mm] mit höhenabhängiger Dichte [mm] p(\overrightarrow{x})= [/mm] 8-z.

Berechnen Sie den Schwerpunkt [mm] \overrightarrow{x_{s}} [/mm] = [mm] \bruch{1}{m} \integral_{\Omega}^{}{\overrightarrow{x} p(\overrightarrow{x}) dV} [/mm]  ,  mit m = [mm] \integral_{\Omega}^{}{p(\overrightarrow{x}) dV} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

1.) m = [mm] \integral_{\Omega}^{}{p(\overrightarrow{x}) dV} [/mm] = [mm] \integral_{0}^{2}\integral_{0}^{1}\integral_{0}^{2\pi}{(8-z) * r *d\phi dr dz} [/mm] = [mm] 14\pi [/mm]

Auf dieses Ergebnis komme ich auch mit den Rechenregeln für Mehrfachintegrale, danach wird es dann allerdings problematisch

2.) [mm] \overrightarrow{x_{s}} [/mm] = [mm] \bruch{1}{m} \integral_{\Omega}^{}{\overrightarrow{x} p(\overrightarrow{x}) dV} [/mm]

[mm] \overrightarrow{x} [/mm] in Zylinderkoordinaten:
[mm] x_{1}= r*cos\phi, r\ge [/mm] 1; [mm] x_{2}= r*sin\phi, 0\le \phi\le 2\pi; x_{3}= [/mm] z

Jetzt stelle ich die Formel für  [mm] \overrightarrow{x_{s}} [/mm] auf

[mm] \overrightarrow{x_{s}} [/mm] = [mm] \bruch{1}{14\pi}\integral_{0}^{2}\integral_{0}^{1}\integral_{0}^{2\pi}{(8-z)\vektor{r*cos\phi \\ r*sin\phi \\ z}*r*d\phi dr dz} [/mm]

ich verstehe aber nicht genau wie ich das jetzt integriere mit dem Vektor? das Ergebnis soll [mm] \vektor{0 \\ 0 \\ \bruch{20}{21}} [/mm] sein, aber ich komme da nicht drauf. Ich hatte jetzt den Vektor versucht nach [mm] \phi [/mm] zu integrieren, und da hatte ich [mm] \vektor{ r* sin\phi \\ r* (-cos\phi) \\ z\phi } [/mm] raus, aber irgendwie ist das glaube ich Quatsch, weil wenn ich das in den gegeben Grenzen subtrahiere kommt da Null raus.

Es wäre super nett wenn mir jemand zeigen könnte wie man sowas löst.

        
Bezug
Mehrfachintegrale Zylinderkoor: Antwort
Status: (Antwort) fertig Status 
Datum: 14:49 So 22.03.2015
Autor: MathePower

Hallo Robienchen,

[willkommenmr]


> Gegeben ist ein Zylinder mit [mm]\Omega[/mm] =
> [mm]\{\overrightarrow{x}(r,\phi,z) : r < 1, \phi \in [0, 2\pi), z \in (0,2]\}[/mm]
> mit höhenabhängiger Dichte [mm]p(\overrightarrow{x})=[/mm] 8-z.
>  
> Berechnen Sie den Schwerpunkt [mm]\overrightarrow{x_{s}}[/mm] =
> [mm]\bruch{1}{m} \integral_{\Omega}^{}{\overrightarrow{x} p(\overrightarrow{x}) dV}[/mm]
>  ,  mit m = [mm]\integral_{\Omega}^{}{p(\overrightarrow{x}) dV}[/mm]
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> 1.) m = [mm]\integral_{\Omega}^{}{p(\overrightarrow{x}) dV}[/mm] =
> [mm]\integral_{0}^{2}\integral_{0}^{1}\integral_{0}^{2\pi}{(8-z) * r *d\phi dr dz}[/mm]
> = [mm]14\pi[/mm]

>


[ok]

  

> Auf dieses Ergebnis komme ich auch mit den Rechenregeln
> für Mehrfachintegrale, danach wird es dann allerdings
> problematisch
>  
> 2.) [mm]\overrightarrow{x_{s}}[/mm] = [mm]\bruch{1}{m} \integral_{\Omega}^{}{\overrightarrow{x} p(\overrightarrow{x}) dV}[/mm]
>  
> [mm]\overrightarrow{x}[/mm] in Zylinderkoordinaten:
>  [mm]x_{1}= r*cos\phi, r\ge[/mm] 1; [mm]x_{2}= r*sin\phi, 0\le \phi\le 2\pi; x_{3}=[/mm]
> z
>  
> Jetzt stelle ich die Formel für  [mm]\overrightarrow{x_{s}}[/mm]
> auf
>  
> [mm]\overrightarrow{x_{s}}[/mm] =
> [mm]\bruch{1}{14\pi}\integral_{0}^{2}\integral_{0}^{1}\integral_{0}^{2\pi}{(8-z)\vektor{r*cos\phi \\ r*sin\phi \\ z}*r*d\phi dr dz}[/mm]
>  
> ich verstehe aber nicht genau wie ich das jetzt integriere
> mit dem Vektor? das Ergebnis soll [mm]\vektor{0 \\ 0 \\ \bruch{20}{21}}[/mm]
> sein, aber ich komme da nicht drauf. Ich hatte jetzt den
> Vektor versucht nach [mm]\phi[/mm] zu integrieren, und da hatte ich
> [mm]\vektor{ r* sin\phi \\ r* (-cos\phi) \\ z\phi }[/mm] raus, aber
> irgendwie ist das glaube ich Quatsch, weil wenn ich das in
> den gegeben Grenzen subtrahiere kommt da Null raus.
>  
> Es wäre super nett wenn mir jemand zeigen könnte wie man
> sowas löst.


Das ist komponentenweise zu integrieren:

Demnach ergeben sich folgende Formeln:

[mm]x_{1}_{s}=\bruch{1}{14\pi}\integral_{0}^{2}\integral_{0}^{1}\integral_{0}^{2\pi}{(8-z )\ \blue{r*cos\phi} \ *r*d\phi dr dz}[/mm]

[mm]x_{2}_{s}=\bruch{1}{14\pi}\integral_{0}^{2}\integral_{0}^{1}\integral_{0}^{2\pi}{(8-z)\ \blue{r*sin\phi} \ *r*d\phi dr dz}[/mm]

[mm]x_{3}_{s}=\bruch{1}{14\pi}\integral_{0}^{2}\integral_{0}^{1}\integral_{0}^{2\pi}{(8-z)\ \blue{z} \ *r*d\phi dr dz}[/mm]


Gruss
MathePower

Bezug
                
Bezug
Mehrfachintegrale Zylinderkoor: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 20:46 Mi 12.08.2015
Autor: Robienchen

Aufgabe
Das ist komponentenweise zu integrieren:

okay für
[mm] x_{3}_{s}=\bruch{1}{14\pi}\integral_{0}^{2}\integral_{0}^{1}\integral_{0}^{2\pi}{(8-z)\ \blue{z} \ \cdot{}r\cdot{}d\phi dr dz} [/mm]

bekomme ich auch das richtige raus, aber für x1 und x2 irgendwie nicht:

[mm] x_{1}_{s}=\bruch{1}{14\pi}\integral_{0}^{2}\integral_{0}^{1}\integral_{0}^{2\pi}{(8-z )\ \blue{r\cdot{}cos\phi} \ \cdot{}r\cdot{}d\phi dr dz} [/mm]

= [mm] \bruch{1}{14\pi}\integral_{0}^{2}\integral_{0}^{1}{[(8-z )\ \blue{r^{2}\cdot{}sin\phi} ] dr dz} [/mm]

= [mm] \bruch{1}{14\pi}\integral_{0}^{2}\integral_{0}^{1}((8-z )r^{2}sin(2\pi))-((8-z )r^{2}sin(0)) [/mm] dr dz

= [mm] \bruch{1}{14\pi}\integral_{0}^{2}\integral_{0}^{1}((8-z )r^{2}*0)-((8-z )r^{2}*0) [/mm] dr dz

= [mm] \bruch{1}{14\pi}\integral_{0}^{2}\integral_{0}^{1} [/mm] 0 dr dz

und jetzt?

Bezug
                        
Bezug
Mehrfachintegrale Zylinderkoor: Antwort
Status: (Antwort) fertig Status 
Datum: 21:48 Mi 12.08.2015
Autor: chrisno

= 0
Falls ich nicht etwas falsch sehe, sollten [mm] $x_1$ [/mm] und [mm] $x_2$ [/mm] auch Null sein.

Bezug
                                
Bezug
Mehrfachintegrale Zylinderkoor: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 07:00 Do 13.08.2015
Autor: Robienchen

Aufgabe
weiter integrieren ...

wieso? wenn ich 0 nach dr intergriere kommt doch ne konstante bei raus oder nicht?

Bezug
                                        
Bezug
Mehrfachintegrale Zylinderkoor: Antwort
Status: (Antwort) fertig Status 
Datum: 10:19 Do 13.08.2015
Autor: notinX

Hallo,

> weiter integrieren ...
>  wieso? wenn ich 0 nach dr intergriere kommt doch ne
> konstante bei raus oder nicht?

nein, nicht bei einem bestimmten Integral. Sonst wäre ja die Fläche, welche die Nullfunktion mit der x-Achse (quasi mit sich selbst) einschließt ungleich 0. Rechne das Integral doch mal explizit aus, dann siehst Du, dass 0 rauskommt.

Gruß,

notinX

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de