www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Mehrfachintegration
Mehrfachintegration < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mehrfachintegration: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 03:40 Do 22.01.2009
Autor: xcase

Aufgabe
1) Berechnen Sie das Integral [mm] \integral_{}^{}{}\integral_{G}^{}{}sin(x-y)dxdy [/mm] . G ist das Dreieck mit den Rändern x = [mm] \bruch{\pi}{2} [/mm] , y = [mm] \bruch{\pi}{2} [/mm] und x + y = 0.

2) Gegeben sei ein zweidimensionales Bierglas der Höhe 4cm. Die Form des Glases ist durch die Parabel y = x2 gegeben. Dieses Glas wird nun um 45◦ Grad gekippt. Wie viel zweidimensionales Bier passt jetzt noch in das Glas ohne das es überfliesst.

zu 1)
ich brauche ja die Grenzen von x und von y. Ich hab mir das Dreieck mal mit den Rändern aufgemalt und nur x+y = 0 ist ja variabel. Undzwar der Punkt variiert auf der Geraden y=-x . Was sind denn jetzt aber meine oberen und unteren Grenzen von x und y?
Sieht das vielleicht so aus:

[mm] \integral_{-\infty}^{\infty}{}\integral_{\infty}^{-\infty}{}sin(x-y)dxdy [/mm] ?
Falls ja weiss ich leider hier nicht mehr weiter^^

zu 2)
Das Bierglas hat ja die Breite 4 und die Höhe 4. Nur wenn ich die Parabel jetzt um 45° Kippe...fällt mir nicht ein mit welchen werten ich weiter rechnen soll. Ich meine aufgemalt hab ichs mir und ich weiss auch welchen Bereich ich Integrieren muss...nur wie krieg ich da die exakten Werte und vor allem wenn ich die Werte habe (Integrationsgrenzen) mit welcher Funktion soll ich dann integrieren, weil [mm] y=x^{2} [/mm] ist es ja dann auch nicht mehr oder? Natürlich schon irgendwie nur um 45° geneigt.. .

Würde mich über einen Ansatz freuen.

MfG Tomi

        
Bezug
Mehrfachintegration: Antwort
Status: (Antwort) fertig Status 
Datum: 07:15 Do 22.01.2009
Autor: fred97


> 1) Berechnen Sie das Integral
> [mm]\integral_{}^{}{}\integral_{G}^{}{}sin(x-y)dxdy[/mm] . G ist das
> Dreieck mit den Rändern x = [mm]\bruch{\pi}{2}[/mm] , y =
> [mm]\bruch{\pi}{2}[/mm] und x + y = 0.
>  
> 2) Gegeben sei ein zweidimensionales Bierglas der Höhe 4cm.
> Die Form des Glases ist durch die Parabel y = x2 gegeben.
> Dieses Glas wird nun um 45◦ Grad gekippt. Wie viel
> zweidimensionales Bier passt jetzt noch in das Glas ohne
> das es überfliesst.
>  zu 1)
>  ich brauche ja die Grenzen von x und von y. Ich hab mir
> das Dreieck mal mit den Rändern aufgemalt und nur x+y = 0
> ist ja variabel. Undzwar der Punkt variiert auf der Geraden
> y=-x . Was sind denn jetzt aber meine oberen und unteren
> Grenzen von x und y?
>  Sieht das vielleicht so aus:
>  
> [mm]\integral_{-\infty}^{\infty}{}\integral_{\infty}^{-\infty}{}sin(x-y)dxdy[/mm]
> ?

Nein


>  Falls ja weiss ich leider hier nicht mehr weiter^^


Hallo Tomi,
das Dreieck hast Du schon gemalt. Gut. Es hat die Eckpunkte [mm] (-\pi/2, \pi/2), (\pi/2,\pi/2) [/mm] und [mm] (\pi/2,- \pi/2) [/mm]

Bei festem x [mm] \in [-\pi/2,\pi/2] [/mm] läuft y von -x bis [mm] \pi/2, [/mm] also

$ [mm] \integral_{}^{}{}\integral_{G}^{}{}sin(x-y)dxdy [/mm] $ = $ [mm] \integral_{-\pi/2}^{\pi/2}{}\integral_{-x}^{\pi/2}{}sin(x-y)dydx [/mm] $


FRED

>  
> zu 2)
>  Das Bierglas hat ja die Breite 4 und die Höhe 4. Nur wenn
> ich die Parabel jetzt um 45° Kippe...fällt mir nicht ein
> mit welchen werten ich weiter rechnen soll. Ich meine
> aufgemalt hab ichs mir und ich weiss auch welchen Bereich
> ich Integrieren muss...nur wie krieg ich da die exakten
> Werte und vor allem wenn ich die Werte habe
> (Integrationsgrenzen) mit welcher Funktion soll ich dann
> integrieren, weil [mm]y=x^{2}[/mm] ist es ja dann auch nicht mehr
> oder? Natürlich schon irgendwie nur um 45° geneigt.. .
>  
> Würde mich über einen Ansatz freuen.
>  
> MfG Tomi


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de