www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Matrizen" - Menge alle 7-Tupel GF(2)
Menge alle 7-Tupel GF(2) < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Menge alle 7-Tupel GF(2): Vektorraum bestimmen
Status: (Frage) beantwortet Status 
Datum: 16:25 Mi 09.12.2009
Autor: yogi_inf

Aufgabe
Zeigen Sie, dass die Menge aller 7-Tupel (b1, b2, . . . , b7) aus GF(2)7, die die Gleichungen
(I)   b1 + b2 + b3 + b4 = 0
(II)  b2 + b3 + b4 + b5 = 0
(III) b3 + b4 + b5 + b6 = 0
(IV)  b4 + b5 + b6 + b7 = 0
erfüllen, einen Vektorraum bildet. Schreiben Sie alle 7-Tupel auf, die zu dieser Menge
gehören. Welche Dimension hat der Vektorraum?

Hi,
Nach ein bisschen Umformen der Gleichungen erhalte ich:
b1=b5
b2=b6
b3=b7
Wenn ich das in die ersten drei Gleichungen einsetze erhalte ich immer die vierte Gleichung.
Daraus folgt, dass der Vektorraum nur von der vierten Gleichung beschrieben wird.
7-Tupel aus GF(2) heißt Vektoren mit 7 Stellen, die jeweils den Wert 0 oder 1 haben denke ich.

Für die Bestimmung der Dimension schaue ich mir die vierte Gleichung an.
Die lässt sich umschreiben zu:
b4+b5+b6 = -b7
Also ließe sich der Vektor b7 durch b4,b5,b6 darstellen.
Daraus folgt, dass der Vektor b7 im von b4,b5,b6 aufgespannten Vektorraum liegt, da er durch diese als Linearkombination dargestellt werden kann.
Ist meine SChlussfolgerung korrekt und ausreichend dargestellt?
Freue mich über Antworten, davon hängt meine Klausurzulassung ab :)



        
Bezug
Menge alle 7-Tupel GF(2): Antwort
Status: (Antwort) fertig Status 
Datum: 07:58 Do 10.12.2009
Autor: angela.h.b.


> Zeigen Sie, dass die Menge aller 7-Tupel (b1, b2, . . . ,
> b7) aus GF(2)7, die die Gleichungen
>  (I)   b1 + b2 + b3 + b4 = 0
>  (II)  b2 + b3 + b4 + b5 = 0
>  (III) b3 + b4 + b5 + b6 = 0
>  (IV)  b4 + b5 + b6 + b7 = 0
>  erfüllen, einen Vektorraum bildet. Schreiben Sie alle
> 7-Tupel auf, die zu dieser Menge
>  gehören. Welche Dimension hat der Vektorraum?
>  Hi,
>  Nach ein bisschen Umformen der Gleichungen erhalte ich:
>  b1=b5
>  b2=b6
>  b3=b7

Hallo,

Du hast hier ein lineares homogenes Gleichungssystem, und ich vermute, daß dran war, daß dessen Lösungen einen VR bilden.

ich ohne Deine Rechnungen zu sehen, Deine Lösung nicht nachvollziehen.Wie lautet denn die Basis Deines Lösungsraumes?

Welche Dimension hat er? Wenn wir die Basis wissen, können wir auch entscheiden, welche Vektoren im Raum liegen.


>  Wenn ich das in die ersten drei Gleichungen einsetze
> erhalte ich immer die vierte Gleichung.
>  Daraus folgt, dass der Vektorraum nur von der vierten
> Gleichung beschrieben wird.

Nein.  Die 4. Gleichung würde gelöst werden vom [mm] Vektor\vektor{0\\0\\0\\1\\1\\1\\1}, [/mm] die erste löst dieser jedoch nicht.

>  7-Tupel aus GF(2) heißt Vektoren mit 7 Stellen, die
> jeweils den Wert 0 oder 1 haben denke ich.

Ja, nun fragt sich nur, welche davon in Deinem Raum sind.


>  
> Für die Bestimmung der Dimension schaue ich mir die vierte
> Gleichung an.
>  Die lässt sich umschreiben zu:
>  b4+b5+b6 = -b7
>  Also ließe sich der Vektor b7 durch b4,b5,b6 darstellen.

Moment! Die [mm] b_i [/mm] sind doch keine Vektoren, sondern jeweils die Einträge der i-ten Komponente.

Gruß v. Angela

Bezug
                
Bezug
Menge alle 7-Tupel GF(2): Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:00 So 13.12.2009
Autor: yogi_inf

Hallo
Entschuldige die späte Antwort.
Danke für den Hinweis mit den Vektorkomponenten....
Die Aufgabe ist jetzt gelöst.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de