www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Menge aller x, die Ungleichung
Menge aller x, die Ungleichung < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Menge aller x, die Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:26 Di 06.11.2007
Autor: abi2007LK

Hallo,

folgende Aufgabe:

Es seien:

[mm] a,\; b\; \in \; Q\; mit\; 0\; <\; a\; <\; [/mm] b.

Q = Menge der rationalen Zahlen

Man bestimme die Menge aller x in Q ohne {b}

Hier mein Ansatz:

b wird als x ausgeschlossen, da sonst der Nenner 0 wäre. Nun würde ich die Aufgabe in mehrere Etappen teilen. Zunächst würde ich für x folgendes annehmen:

[mm] Menge\; aller\; x\; in\; \left( Q\; ohne\; \left\{ b \right\}\; \cap \; \left\{ b,\; ...,\; \infty \right\} \right) [/mm]

In Worten: Ich nehme für x nur Werte, die > b sind.

Daraus folgt: x > b und x > 0

[mm] \frac{ax\; -a^{2}}{x-b}\; >\; b\; [/mm]

[mm] ax\; -a^{2}\; >\; b\; \left( x-b \right)\; [/mm]

[mm] ax\; -bx\; >\; -b^{2}+a^{2} [/mm]

[mm] x\left( a-b \right)\; >\; -b^{2}+a^{2} [/mm]

Nun durch (a-b) teilen - darf ich ja, da a-b > 0 ist.

[mm] x\; <\; [/mm] a+b

Nun weiß ich, dass x < a+b sein muss.

[mm] M_{1}\; =\; \left\{ x\; \in \; Q\; \\; \left\{ b \right\}\; :\; x\; <\; a+b \right\} [/mm]

Jetzt müsste ich noch den Fall für x < b und x > 0 und dann noch für b < 0 bis minus unendlich.

Das Ergebnis wäre dann die Vereinigung der Mengen [mm] M_1, M_2, [/mm] usw.

Richtig?

        
Bezug
Menge aller x, die Ungleichung: Aufgabenstellung?
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:34 Mi 07.11.2007
Autor: angela.h.b.


> Hallo,
>  
> folgende Aufgabe:
>  
> Es seien:
>  
> [mm]a,\; b\; \in \; Q\; mit\; 0\; <\; a\; <\;[/mm] b.
>  
> Q = Menge der rationalen Zahlen
>  
> Man bestimme die Menge aller x in Q ohne {b}
>  


Hallo,

wenn das alles ist, wäre es sehr einfach...

Ich fürchte, Du hast ein nicht ganz unwesentliches "Detail" der Aufgabenstellung vergessen...

Aber meine hellseherischen Fähigkeiten lassen mich mal wieder nicht im Stich:

Gewiß sollst Du die [mm] x\in \IQ [/mm] \ [mm] \{b\} [/mm] bestimmen, für welche $ [mm] \frac{ax\; -a^{2}}{x-b}\; >\; b\; [/mm] $  gilt.

Stimmt's?

Im Prinzip machst Du das schon richtig. Du erkennst, daß wegen des Ungleichheitszeichen Fallunterscheidungen notwendig sind.

Aber Du strebst zuviele Fallunterscheidungen an: 1. x> b   und 2. x< b reichen doch.   (Oder sollte ich etwas übersehen haben?)


Dann och eine Kleinigkeit, möglicherweise bloß ein Tippfehler:

> $ [mm] x\left( a-b \right)\; >\; -b^{2}+a^{2} [/mm] $

> Nun durch (a-b) teilen - darf ich ja, da a-b > 0 ist.

Es ist a-b < 0 .   Das Ergebnis stimmt dann allerdings wieder:

  $ [mm] x\; <\; [/mm] $ a+b


> $ [mm] M_{1}\; =\; \left\{ x\; \in \; Q\; \\; \left\{ b \right\}\; :\; x\; <\; a+b \right\} [/mm] $

Hier vergißt Du etwas sehr Wichtiges: Du hast gerade den Fall untersucht, daß  x>b, diese Bedingung darfst Du in [mm] M_1 [/mm] nicht vergessen, und dann mußt Du über die Konsequenzen nachdenken.

Gruß v. Angela


Bezug
                
Bezug
Menge aller x, die Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:38 Mi 07.11.2007
Autor: abi2007LK

Danke Angela,

deine Hellseherischen Fähigkeiten sind verblüffend.

Habe die Aufgabe nun nochmals durchgerechnet - unter Verwendung deiner Tipps. Habe nun zwei Mengen, deren Vereinigung das Ergebnis ist.

Du sagtest: "und dann mußt Du über die Konsequenzen nachdenken." - über die Konsequenzen von was?


Bezug
                        
Bezug
Menge aller x, die Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:51 Mi 07.11.2007
Autor: angela.h.b.


> Du sagtest: "und dann mußt Du über die Konsequenzen
> nachdenken." - über die Konsequenzen von was?

Du hattest in Fall 1:

x>b  und x<a+b

Die Konsequenzen? Keine...

Da a>0 gibt's da keine Widersprüche oder Einschränkungen. Hab' ich nicht dran gedacht vorhin.

Gruß v. Angela

Bezug
                                
Bezug
Menge aller x, die Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:01 Mi 07.11.2007
Autor: abi2007LK

Vielen Dank. Hat mich irgendwie iritiert. Dann kann ich nun also alles nochmal hübsch zu Papier bringen.

Danke.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de