www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Menge in der Potenz
Menge in der Potenz < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Menge in der Potenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:20 Di 24.04.2018
Autor: Mandy_90

Hallo Leute,
ich hab mal eine allgemeine Frage. Sei [mm] M=\{1,2,3 \} [/mm] eine Menge. Was ist dann [mm] 2^{M} [/mm] ? Ist das überhaupt definiert ?

lg
Mandy

        
Bezug
Menge in der Potenz: Antwort
Status: (Antwort) fertig Status 
Datum: 15:40 Di 24.04.2018
Autor: Diophant

Hallo,

> Hallo Leute,
> ich hab mal eine allgemeine Frage. Sei [mm]M=\{1,2,3 \}[/mm] eine
> Menge. Was ist dann [mm]2^{M}[/mm] ? Ist das überhaupt definiert ?

>

Ja: das ist eine von mehreren gebräuchlichen Schreibweisen für die Potenzmenge einer Menge. D.h. in diesem Fall:

[mm]2^M= \left \{ \emptyset;\left \{1\right \};\left \{2\right \};\left \{3\right \}; \left \{ 1;2 \right \}; \left \{1;3 \right \} \left\{ 2;3\right \} \left\{ 1;2;3 \right \} \right \}[/mm]


Gruß, Diophant

Bezug
        
Bezug
Menge in der Potenz: Antwort
Status: (Antwort) fertig Status 
Datum: 16:23 Di 24.04.2018
Autor: fred97


> Hallo Leute,
>  ich hab mal eine allgemeine Frage. Sei [mm]M=\{1,2,3 \}[/mm] eine
> Menge. Was ist dann [mm]2^{M}[/mm] ? Ist das überhaupt definiert ?
>  
> lg
>  Mandy  

Diophant hat ja das Relevante gesagt.  Aber man sollte noch erwähnen, woher diese Bezeichnungsweise  kommt:

Hat M n Elemente , so hat die Potenzmenge von M [mm] 2^n [/mm] Elemente.

Bezug
        
Bezug
Menge in der Potenz: mengentheoret. Hintergrund
Status: (Antwort) fertig Status 
Datum: 17:30 Di 24.04.2018
Autor: Al-Chwarizmi


> Hallo Leute,

> ich hab mal eine allgemeine Frage. Sei [mm]M=\{1,2,3 \}[/mm] eine
> Menge. Was ist dann [mm]2^{M}[/mm] ? Ist das überhaupt definiert ?


Hallo Mandy

Noch eine weitere Ergänzung:
Um diese Schreibweise mengentheoretisch zu verstehen, sollte
man noch wissen, dass für zwei beliebige Mengen $\ A$ und $\ B$
die Menge  $\ [mm] P\, [/mm] :=\ [mm] A^B$ [/mm]  definiert ist als die Menge aller
möglichen Funktionen von $\ B$ nach $\ A$.

Jede einzelne solche Funktion hat als Definitionsmenge die
Menge $\ B$, und alle ihre (jeweils eindeutig festgelegten) Werte
sind Elemente von $\ A$.

Um nun die Schreibweise  $\ [mm] 2^M$ [/mm]  (mit einer gegebenen Menge M)
in dieser Weise interpretieren zu können, muss auch die Basis
$\ 2$ in dieser Notation als eine Menge aufgefasst werden können.
Dies macht man in der axiomatischen Mengenlehre so, dass man
festsetzt:

$\ [mm] 2\,:= \{0,1\}$ [/mm]

aufbauend auf

$\ [mm] 0\,:=\ \{\}$ [/mm]            (leere Menge)
$\ [mm] 1\,:=\ \{0\}\ [/mm] =\ [mm] \{\{\}\}$ [/mm]     (Menge mit dem einzigen Element 0 )

Ausführlich notiert ist dann also  $\ [mm] 2\,=\ \{0,1\}\ [/mm] =\ [mm] \{\{\},\{\{\}\}\}$ [/mm]

Soweit ein kleiner Einblick in die Methode, nach der man in
der axiomatischen Mengenlehre (nach Zermelo-Fraenkel) das
Zahlenreich quasi aus dem "Nichts" aufbaut ...

Kommen wir jetzt konkret zum Beispiel der Menge

        $\ [mm] P\,:=\ 2^M$ [/mm]  mit  $\ [mm] M\,=\, \{1,2,3\}$ [/mm]

Die Menge P enthält alle Funktionen mit Definitionsbereich M
und mit Werten in der Menge  $\ 2$ = {0,1}.

Ein ganz konkretes Beispiel eines Elementes von P wäre also
etwa die Funktion  $\ [mm] f:\, M\,\mapsto\, [/mm] 2 $  mit

     f(1) = 1
     f(2) = 0
     f(3) = 1

Diese Funktion f kann man nun z.B. auch eindeutig charakterisieren,
indem man einfach die Menge jener Elemente von M angibt, welchen
der Wert 1 zugeordnet ist. Im vorliegenden Beispiel also die Menge
  
     $\ [mm] T_f(M)\ [/mm] =\ [mm] \{1,3\}$ [/mm]

Für jedes Element  $\ [mm] x\,\in\, [/mm] M$  gelte:   $\ [mm] x\,\in T_f(M)\ \gdw\ f(x)\,=\,1$ [/mm]

Es ist nun leicht zu zeigen, dass die Menge aller möglichen Funktionen

     $\ [mm] f:\, M\,\mapsto\, [/mm] 2 $

äquivalent ist zur Menge aller Teilmengen von M, also zur sogenannten
"Potenzmenge" von M.
Auch dass diese Menge dann jeweils [mm] 2^m [/mm] Elemente besitzt, wenn die
Menge M aus m Elementen besteht, ist dann trivial.

Die Bezeichnung "Potenzmenge" für die Menge aller Teilmengen einer
vorliegenden Menge ist aber so gesehen eigentlich nur ein recht simpler
Spezialfall unter einem im Kern betrachtet wesentlich reichhaltigeren
Begriff.

LG ,   Al-Chwarizmi



Bezug
                
Bezug
Menge in der Potenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:35 Do 26.04.2018
Autor: Mandy_90

Danke Al-Chwarizmi,  dass du das so ausführlich erklärt hast. Das hat mir sehr geholfen.

lg
Mandy_90

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 3h 37m 7. fred97
UAnaRn/Satz Implizite Funktion System
Status vor 20h 29m 3. Dom_89
SDiffRech/Ableitung bilden
Status vor 1d 1h 15m 2. leduart
UGeoW/Raumgruppen und Symmetrien
Status vor 1d 3h 29m 6. Dom_89
SIntRech/Partielle Integration/Substitu
Status vor 1d 3h 31m 3. Dom_89
SLinGS/Lösungsverhalten LGS
^ Seitenanfang ^
www.vorhilfe.de