www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Menge ist Graph einer Funktion
Menge ist Graph einer Funktion < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Menge ist Graph einer Funktion: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:00 Mo 13.11.2006
Autor: Phoney

Aufgabe
Zeigen Sie, dass die Menge [mm] $G_1:=$ [/mm] [ $(x,y) [mm] \in \IR \times \IR: [/mm] y= x$] der Graph der Funktion [mm] f_1 [/mm] ist.

Die eckigen Klammern sind geschweifte Klammern!


Hallo.

Wie zeigt man so etwas?
Zunächst dachte ich, man muss zeigen, dass er injektiv oder surjektiv (oder beides) ist. Stimmt aber nicht. Als für so eine Abbildung muss ich ja dem x Wert ein Y-Wert zuordnen können. Da es IR ist, kann ich das doch. Also ist es der Graph einer Funktion. Das ist bloß richtig schwach von mir ausgedrückt. Wie macht man so etwas mathematisch? Wie muss ich es machen?

Lieben Gruß
Johann

        
Bezug
Menge ist Graph einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 01:15 Di 14.11.2006
Autor: DaMenge

Hi,

[mm] G_1 [/mm] ist sicherlich der Graph der Funktion g, wobei y=g(x)=x

in der Aufgabe steht aber etwas von der Funktion [mm] f_1 [/mm] , aber es wird nicht klar, welche dies sein soll...
(also ein Graph ist es sicher, aber ob die Funktion die richtige ist, kann man so nicht entscheiden..)

viele Grüße
DaMenge

Bezug
                
Bezug
Menge ist Graph einer Funktion: Fehler in Aufgabenstellung
Status: (Frage) beantwortet Status 
Datum: 16:29 Di 14.11.2006
Autor: Phoney

Hallo.

> [mm]G_1[/mm] ist sicherlich der Graph der Funktion g, wobei
> y=g(x)=x
>  
> in der Aufgabe steht aber etwas von der Funktion [mm]f_1[/mm] , aber
> es wird nicht klar, welche dies sein soll...

Du liest sehr genau :-)
Es handelte sich um einen Fehler von meiner Seite. es muß heißen:

Zeigen Sie, dass die Menge $ [mm] G_1:= [/mm] $ [ $ (x,y) [mm] \in \IR \times \IR: [/mm] y= x $] der Graph einer Funktion $ [mm] f_1 [/mm] $ ist.

>  (also ein Graph ist es sicher, aber ob die Funktion die
> richtige ist, kann man so nicht entscheiden..)

Wie weise ich das denn mit dem Graphen nach? Das verstehe ich ja leider nicht.

viele Grüße
Johann

Bezug
                        
Bezug
Menge ist Graph einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:31 Sa 18.11.2006
Autor: DaMenge

Hi,

ja, wie habt ihr denn "Graph" definiert?
du musst also nur zeigen, dass es eine Funktion gibt, die dann die angegebene Menge zu einem Graph macht (also ,dass die menge die geforderten Eigenschaften erfüllt)

du kannst dies zeigen, indem du einfach [mm] $y=f_1(x)=x$ [/mm] ansetzt und zeigst:
1) [mm] f_1 [/mm] ist eine Funktion (sollte aber klar sein, bzw schnell abgehandelt werden)

2) der graph dieser Funktion ist genau die angegebene Menge.
(zum beispiel per widerspruch zu zeigen)

viele Grüße
DaMenge

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de