www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Menge komplexer Zahlen
Menge komplexer Zahlen < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Menge komplexer Zahlen: Idee
Status: (Frage) beantwortet Status 
Datum: 17:36 Mi 07.12.2011
Autor: Sylece

Aufgabe
1. Bestimmen und skizzieren Sie die folgende Menge in der
komplexen Ebene:

M := Bild des Einheitskreises unter der Abbildung f : [mm] \IC ->\IC ,f(z)=\bruch{z}{|z|+3} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo :-)

Ich habe eine Frage zu dieser Aufgabe und zwar was mit dem "Bild des Einheitskreises unter der Abbildung" gemeint ist??
Inwiefern muss ich das nachher in der Berechnung der Menge berücksichtigen!?

        
Bezug
Menge komplexer Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:49 Mi 07.12.2011
Autor: kamaleonti

Hallo Sylece,

     [willkommenmr]!

> 1. Bestimmen und skizzieren Sie die folgende Menge in der komplexen Ebene:
>  
> M := Bild des Einheitskreises unter der Abbildung f : [mm]\IC ->\IC ,f(z)=\bruch{z}{|z|+3}[/mm]

> Ich habe eine Frage zu dieser Aufgabe und zwar was mit dem
> "Bild des Einheitskreises unter der Abbildung" gemeint ist??

Der Einheitskreis ist die Menge [mm] S=\{z\in\IC, z=a+bi: a^2+b^2=1\}=\{\cos\varphi+\sin\varphi i, \varphi\in[0,2\pi)\}. [/mm]

>  Inwiefern muss ich das nachher in der Berechnung der Menge berücksichtigen!?

Die Frage ist, auf welche Menge M die Menge S unter f abgebildet wird.

Nimm dir einen Punkt aus S, berechne sein Bild. Was vermutest Du?

LG


Bezug
                
Bezug
Menge komplexer Zahlen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:25 Mi 07.12.2011
Autor: Sylece

danke für die schnelle antwort :-)

Ich habe deine Gleichung [mm] a^{2}+b^{2}= [/mm] 1 nach b aufgelöst:

[mm] b=\wurzel{1-a^{2}} [/mm]

wenn ich jetzt für a=1 einsetze bekomme ich für b=0 heraus.

nun habe ich ja einen Punkt (1;0)

wenn ich den in f(z) einsetze bekomme ich [mm] \bruch{1}{4} [/mm] heraus!

was sagt mir das jetzt über die Menge aus ^^??

Diese Aufgabe unterscheidet sich ziemlich stark von unseren Übungsaufgaben...Daher fehlt mir jeglicher Ansat!

vielen Dank im Vorraus :-)

Bezug
                        
Bezug
Menge komplexer Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:45 Mi 07.12.2011
Autor: schachuzipus

Hallo,


> danke für die schnelle antwort :-)
>  
> Ich habe deine Gleichung [mm]a^{2}+b^{2}=[/mm] 1 nach b aufgelöst:
>  
> [mm]b=\wurzel{1-a^{2}}[/mm]
>  
> wenn ich jetzt für a=1 einsetze bekomme ich für b=0
> heraus.
>  
> nun habe ich ja einen Punkt (1;0)
>  
> wenn ich den in f(z) einsetze bekomme ich [mm]\bruch{1}{4}[/mm]
> heraus![ok]
>  
> was sagt mir das jetzt über die Menge aus ^^??

Na, setze doch mal einen allg. Punkt [mm]P=(x,y)=x+iy=z[/mm] auf dem Einheitskreis ein.

Du weißt, dass [mm]x^2+y^2=1[/mm]

Und damit auch [mm]\red{\sqrt{x^2+y^2}=1}[/mm]

[mm]f(z)=\frac{z}{|z|+3}=\frac{z}{\red{\sqrt{x^2+y^2}}+3}=\frac{z}{\red{1}+3}=\frac{1}{4}z[/mm]

Nun?


>  
> Diese Aufgabe unterscheidet sich ziemlich stark von unseren
> Übungsaufgaben...Daher fehlt mir jeglicher Ansat!
>  
> vielen Dank im Vorraus :-)

Ein "r" genügt dem "voraus" völlig ...

Gruß

schachuzipus


Bezug
                                
Bezug
Menge komplexer Zahlen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:02 Mi 07.12.2011
Autor: Sylece

Also ist die gesuchte Menge gleich der Menge des Einheitskreises nur mit dem Radius [mm] \bruch{1}{4} [/mm] statt 1?

> Ein "r" genügt dem "voraus" völlig ...

Ich werde schon ganz zittrig von der ganzen Rechnerei :-P

lg :-)


Bezug
                                        
Bezug
Menge komplexer Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:05 Mi 07.12.2011
Autor: kamaleonti


> Also ist die gesuchte Menge gleich der Menge des
> Einheitskreises nur mit dem Radius [mm]\bruch{1}{4}[/mm] statt 1?

Ja [daumenhoch]!

(Es ist dann natürlich nicht mehr der Einheitskreis)

LG


Bezug
                                                
Bezug
Menge komplexer Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:07 Mi 07.12.2011
Autor: Sylece

:-)

Vielen Dank ihr seid super :-)

vlg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de