www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionalanalysis" - Menge relativ kompakt
Menge relativ kompakt < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Menge relativ kompakt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:25 Mi 09.05.2018
Autor: Noya

Aufgabe
Ist die Menge [mm] \{sin(nx) : n \in \IN\}\subseteq C([-\pi,\pi]) [/mm] relativ kompakt bezüglich der Supremumsnorm?

Hallo ihr Lieben :-)
vorab unsere Defintionen/Sätze, die hier meiner Meinung nach hilfreich sein könnten.

Satz Arzela-Ascoli (allgemeine Version):
Sei (K,d) ein kompakter metrischer Raum und sei (X,d) ein vollständiger metrischer Raum. Weiter sei A [mm] \subset [/mm] C(K,X). Dann ist A genau dann relativ kompakt, wenn gilt
(i) Für alle k [mm] \in [/mm] K ist A(k) [mm] :=\{f(k)|f \in A\} [/mm] relativ kompakt in X.
(ii) A ist gleichgradig stetig auf A, [mm] d.h.\forall \epsilon [/mm] >0 [mm] \exists \delta [/mm] >0 :|f(x)-f(y)|< [mm] \epsilon [/mm] für alle x,y [mm] \in [/mm] K mit d(x,y) < [mm] \delta [/mm] für alle f [mm] \in [/mm] A.


Definition:
Sei (M,d) ein metrischer Raum.
(i) A $ [mm] \subset [/mm] $ M heißt kompakt, wenn jedes System offener Mengen, das A überdeckt, eine endliche Teilüberdeckung enthält.
(ii) $ [mm] A\subset [/mm] $ M heißt relativ kompakt, wenn $ [mm] \overline{A} [/mm] $ kompakt ist.
(iii)  $ [mm] A\subset [/mm] $ M heißt prkompakt, wenn es zu jedem [mm] \epsilon [/mm] >0 endlich viele offene Kugeln vom Radius [mm] \epsilon [/mm] gibt, die A überdecken.

Satz:
(M,d) vollständ. metr. Raum.  $ [mm] A\subset [/mm] $ M :
A rel. kompakt [mm] \gdw [/mm] A präkompakt


Wir wissen aus unserem Skript ebenfalls, dass [mm] C([a,b],\parallel \cdot \parallel_{\infty} [/mm] vollstädniger metrischer Raum ist.
und das das Intervall [a,b] kompakt ist:
Also in Anlehnung der Notation von Ascoli-Arzela :
[mm] A=\{sin(nx) : n \in \IN\}\subseteq C([-\pi,\pi]) [/mm]
jetzt muss ich überprüfen:
a) für alle x [mm] \in [-\pi,\pi] A(x)=\{f_n(x)=sin(nx) : n \in \IN \} [/mm] relativ kompakt in [mm] C([-\pi,\pi]) [/mm]
und
b) A ist gleichgradig stetig auf A, [mm] d.h.\forall \epsilon [/mm] >0 [mm] \exists \delta [/mm] >0 :|f(x)-f(y)|< [mm] \epsilon [/mm] für alle x,y [mm] \in [/mm] K mit d(x,y) < [mm] \delta [/mm] für alle f [mm] \in [/mm] A.

oder sollte ich lieber auf die "klassische Version" von Ascoli-Arzela zurückgreifen? also auf:
Sei (K,d) ein kompakter metrischer Raum und sei [mm] A\subset [/mm] C(K), wobei C(K) wie üblich mit der Supremumsnorm versehen wird. Dann ist A genau dann relativ kompakt, wenn gilt
(i) A ist punktweise beschränkt, d.h.
für alle x [mm] \in [/mm] K [mm] \exists [/mm] c>0 : [mm] :|f(x)|\le [/mm] c füur alle f [mm] \in [/mm] A.
(ii) A ist gleichgradig stetig auf K, d.h.
[mm] \forall \epsilon>0 \exists \delta>0 [/mm] :|f(x)-f(y)|< [mm] \epsilon [/mm] für alle x,y [mm] \in [/mm] K mit d(x,y) < [mm] \delta [/mm] und alle f [mm] \in [/mm] A.



wobei [mm] K=[-\pi,\pi] [/mm] , [mm] C(K)=C([-\pi,\pi]) [/mm] und [mm] A=\{f_n(x)=sin(nx) : n \in \IN\}\subseteq C([-\pi,\pi]) [/mm]
dann ist ja klar, dass für alle x [mm] \in [/mm] K, c>0:  [mm] |f_n(x)|=|sin(nx)|\le [/mm] 1 ist für alle f [mm] \in [/mm] A.
und zweitens :
[mm] |f(x)-f(y)|=|sin(nx)-sin(ny)|\le sup_{x \in [-\pi,\pi]} [/mm] |f'x|[nx-ny| [mm] \le n^2|x-y| \le n^2 \delta [/mm]  
und jetzt müsste ich zeigen, dass [mm] n^2 \delta [/mm] < [mm] \epsilon. [/mm] aber da wüsste ich nicht weiter.
Wäre jemand so lieb und würde mir bei der Aufgabe behilflich sein?

Liebe grüße und vielen dank
Noya                                            


        
Bezug
Menge relativ kompakt: Antwort
Status: (Antwort) fertig Status 
Datum: 13:35 Mi 09.05.2018
Autor: fred97


> Ist die Menge [mm]\{sin(nx) : n \in \IN\}\subseteq C([-\pi,\pi])[/mm]
> relativ kompakt bezüglich der Supremumsnorm?
>  Hallo ihr Lieben :-)
>  vorab unsere Defintionen/Sätze, die hier meiner Meinung
> nach hilfreich sein könnten.
>  
> Satz Arzela-Ascoli (allgemeine Version):
> Sei (K,d) ein kompakter metrischer Raum und sei (X,d) ein
> vollständiger metrischer Raum. Weiter sei A [mm]\subset[/mm]
> C(K,X). Dann ist A genau dann relativ kompakt, wenn gilt
> (i) Für alle k [mm]\in[/mm] K ist A(k) [mm]:=\{f(k)|f \in A\}[/mm] relativ
> kompakt in X.
> (ii) A ist gleichgradig stetig auf A, [mm]d.h.\forall \epsilon[/mm]
> >0 [mm]\exists \delta[/mm] >0 :|f(x)-f(y)|< [mm]\epsilon[/mm] für alle x,y
> [mm]\in[/mm] K mit d(x,y) < [mm]\delta[/mm] für alle f [mm]\in[/mm] A.
>
>
> Definition:
> Sei (M,d) ein metrischer Raum.
> (i) A [mm]\subset[/mm] M heißt kompakt, wenn jedes System offener
> Mengen, das A überdeckt, eine endliche Teilüberdeckung
> enthält.
> (ii) [mm]A\subset[/mm] M heißt relativ kompakt, wenn [mm]\overline{A}[/mm]
> kompakt ist.
> (iii)  [mm]A\subset[/mm] M heißt prkompakt, wenn es zu jedem
> [mm]\epsilon[/mm] >0 endlich viele offene Kugeln vom Radius [mm]\epsilon[/mm]
> gibt, die A überdecken.
>
> Satz:
> (M,d) vollständ. metr. Raum.  [mm]A\subset[/mm] M :
> A rel. kompakt [mm]\gdw[/mm] A präkompakt
>  
> Wir wissen aus unserem Skript ebenfalls, dass
> [mm]C([a,b],\parallel \cdot \parallel_{\infty}[/mm] vollstädniger
> metrischer Raum ist.
>  und das das Intervall [a,b] kompakt ist:
>  Also in Anlehnung der Notation von Ascoli-Arzela :
>  [mm]A=\{sin(nx) : n \in \IN\}\subseteq C([-\pi,\pi])[/mm]
>  jetzt
> muss ich überprüfen:
>  a) für alle x [mm]\in [-\pi,\pi] A(x)=\{f_n(x)=sin(nx) : n \in \IN \}[/mm]
> relativ kompakt in [mm]C([-\pi,\pi])[/mm]
>  und
>  b) A ist gleichgradig stetig auf A, [mm]d.h.\forall \epsilon[/mm]
> >0 [mm]\exists \delta[/mm] >0 :|f(x)-f(y)|< [mm]\epsilon[/mm] für alle x,y
> [mm]\in[/mm] K mit d(x,y) < [mm]\delta[/mm] für alle f [mm]\in[/mm] A.
>  
> oder sollte ich lieber auf die "klassische Version" von
> Ascoli-Arzela zurückgreifen? also auf:
>  Sei (K,d) ein kompakter metrischer Raum und sei [mm]A\subset[/mm]
> C(K), wobei C(K) wie üblich mit der Supremumsnorm versehen
> wird. Dann ist A genau dann relativ kompakt, wenn gilt
> (i) A ist punktweise beschränkt, d.h.
> für alle x [mm]\in[/mm] K [mm]\exists[/mm] c>0 : [mm]:|f(x)|\le[/mm] c füur alle f
> [mm]\in[/mm] A.
> (ii) A ist gleichgradig stetig auf K, d.h.
>   [mm]\forall \epsilon>0 \exists \delta>0[/mm] :|f(x)-f(y)|<
> [mm]\epsilon[/mm] für alle x,y [mm]\in[/mm] K mit d(x,y) < [mm]\delta[/mm] und alle f
> [mm]\in[/mm] A.
>  
>
> wobei [mm]K=[-\pi,\pi][/mm] , [mm]C(K)=C([-\pi,\pi])[/mm] und
> [mm]A=\{f_n(x)=sin(nx) : n \in \IN\}\subseteq C([-\pi,\pi])[/mm]
> dann ist ja klar, dass für alle x [mm]\in[/mm] K, c>0:  
> [mm]|f_n(x)|=|sin(nx)|\le[/mm] 1 ist für alle f [mm]\in[/mm] A.
>  und zweitens :
>  [mm]|f(x)-f(y)|=|sin(nx)-sin(ny)|\le sup_{x \in [-\pi,\pi]}[/mm]
> |f'x|[nx-ny| [mm]\le n^2|x-y| \le n^2 \delta[/mm]  
> und jetzt müsste ich zeigen, dass [mm]n^2 \delta[/mm] < [mm]\epsilon.[/mm]
> aber da wüsste ich nicht weiter.

Ich auch nicht. Aber obiges deutet darauf hin, dass

[mm]A=\{sin(nx) : n \in \IN\}[/mm] nicht gleichgradig stetig ist. Das kannst Du so einsehen. Nimm an, A wäre gleichgradig stetig. Dann gibt es zu [mm] $\varepsilon=1/2$ [/mm] ein [mm] \delta [/mm] >0 mit


(*) $| [mm] \sin [/mm] (nx)- [mm] \sin [/mm] (ny)|< 1/2$  für alle $x,y [mm] \in [/mm] [- [mm] \pi, \pi]$ [/mm] mit |x-y|< [mm] \delta [/mm] und alle n [mm] \in \IN. [/mm]

Nun wähle $n [mm] \in \IN$ [/mm] so groß, dass [mm] \frac{\pi}{2n}< \delta [/mm] ausfällt.

Damit setze [mm] x=\frac{\pi}{2n} [/mm] und y=0.

Dann ist [mm] |x-y|=x=\frac{\pi}{2n}< \delta. [/mm] Nach (*) ist dann $| [mm] \sin [/mm] (nx)- [mm] \sin [/mm] (ny)|< 1/2$ .

Nun ist aber $| [mm] \sin [/mm] (nx)- [mm] \sin [/mm] (ny)|=1> 1/2$ .

Dieser Widerspruch zeigt das Gewünschte.


>  Wäre jemand so lieb und würde mir bei der Aufgabe
> behilflich sein?
>  
> Liebe grüße und vielen dank
>  Noya                                            
>  


Bezug
                
Bezug
Menge relativ kompakt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:00 Do 10.05.2018
Autor: Noya

Klar macht Sinn. Es muss ja schliesslich für alle [mm] \epsilon [/mm] >0 gelten.

Vielen Dank :-)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionalanalysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 4h 55m 8. Gonozal_IX
FunkAna/X nicht vollständig
Status vor 7h 13m 2. ChopSuey
Ind/Induktionsanfang
Status vor 9h 06m 1. Hela123
UAlgoDatstrukt/Teile und Herrsche
Status vor 11h 09m 5. Hela123
UAnaInd/Rekursionsgleichung auflösen
Status vor 13h 41m 2. felixf
UAlgGRK/Zyklische Gruppe
^ Seitenanfang ^
www.vorhilfe.de