www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Mengen
Mengen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:25 So 16.04.2006
Autor: AundB

Aufgabe
Es seien A und B beliebige Mengen. Beweisen Sie: a) Sind f:A -> B und g: B-> A zwei Abbildungen und g°f = ida, so ist f injektiv und g surjektiv.

b) ist g:B -> A eine surjektive Abbildung, so gibt es eine injektive Abbildung f: A->B mit g°f = ida.
Gibt es auch stets eine Abbildung h: A-> B mit h°g = idb

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Also, f ist ja injektive, weil jedem A genau ein B zugeordnet wird. und dann A1 logischer Weise B1 zugeordnet werden müsste. reicht es dann wenn ich als Begründung schreiben würde:
f:A->B, x->y  x1 ungleich x2,...  und y1 undleich y2,... ?

Und weiter komm ich nich. hat jemand einen Lösungsvorschlag?

        
Bezug
Mengen: erste Aufgabe
Status: (Antwort) fertig Status 
Datum: 19:32 So 16.04.2006
Autor: DaMenge

Hallo und [willkommenmr],

> Also, f ist ja injektive, weil jedem A genau ein B
> zugeordnet wird. und dann A1 logischer Weise B1 zugeordnet
> werden müsste. reicht es dann wenn ich als Begründung
> schreiben würde:
> f:A->B, x->y  x1 ungleich x2,...  und y1 undleich y2,... ?


Was willst du denn als die Pünktchen schreiben ?
Ich meine : hier fehlt ja offensichtlich noch mind. eine Folgerung bzw Begründung..

Ich würde es ziemlich einfach mit Widerspruch beweisen:
angenommen f ist nicht injektiv, dann gibt es zwei Elemente x und y, die das selbe Bild haben.
Was ist dann aber g(f(x)) und g(f(y)) ? Ist das die Identität?

weiterhin : angenommen g sei nicht surjektiv : dann gibt es ... ?

Jetzt bist du dran.

Versuch dich mal.

viele Grüße
DaMenge

Bezug
                
Bezug
Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:50 So 16.04.2006
Autor: AundB

irgendwie bin ich jetzt noch verwirrter. Identität?
habe sowas vorher noch nie gemacht und steh gerad irgendwie ein bischen auf dem schlauch. könntest du vll ein bischen genauer werden?

Bezug
                        
Bezug
Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:48 Mo 17.04.2006
Autor: DaMenge

Hi,

was glaubst du denn was [mm] $id_A$ [/mm] ist ?

Das ist die Identität bzw die identische Abbildung, es ist die Abbildung , so dass gilt : [mm] $id_A [/mm] (a)=a [mm] \quad\forall a\in [/mm] A$

d.h. was da steht als bedingung ist nichts anderes als :
für alls a aus A soll gelten : g(f(a))=a

Kannst du jetzt etwas mit den Widerspruchs-ansätzen anfangen?

viele Grüße
DaMenge

Bezug
                                
Bezug
Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:27 Di 18.04.2006
Autor: AundB

mhm, naja, nich wirklich. hab sowas noch nie gemacht. aber egal. danke trotzdem!

Bezug
        
Bezug
Mengen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Do 20.04.2006
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de