www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Mengen
Mengen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:08 Sa 30.10.2010
Autor: melisa1

Aufgabe
Seien M und N zwei Mengen und f eine Abbildung von M nach N. Seien A und B zwei Teilmenge von M

vergleichen sie:

$f [mm] (M\backslash [/mm] A)$ und [mm] $N\backslash [/mm] f (A)$.


Hallo,


ich hatte schon so ähnliche Aufgaben wo ich zeigen sollte, dass das eine Teilmenge des anderen ist. Hier versteh ich aber nicht, wie das gehen soll. Wie kann
$f [mm] (M\backslash [/mm] A)$ Teilmenge von [mm] $N\backslash [/mm] f (A)$ sein, wenn da gar kein Menge N vorhanden ist?


Kann mir jemand ein Tipp, bzw. ein Anstoß geben, wie ich da ran gehen soll?

Bin dankbar für jeden Hinweis


Lg Melisa

        
Bezug
Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:21 Sa 30.10.2010
Autor: rainerS

Hallo Melisa!

> Seien M und N zwei Mengen und f eine Abbildung von M nach
> N. Seien A und B zwei Teilmenge von M
>  
> vergleichen sie:
>
> [mm]f (M\backslash A)[/mm] und [mm]N\backslash f (A)[/mm].
>  
> Hallo,
>  
>
> ich hatte schon so ähnliche Aufgaben wo ich zeigen sollte,
> dass das eine Teilmenge des anderen ist. Hier versteh ich
> aber nicht, wie das gehen soll. Wie kann
> [mm]f (M\backslash A)[/mm] Teilmenge von [mm]N\backslash f (A)[/mm] sein,
> wenn da gar kein Menge N vorhanden ist?

Schau dir die Aufgabe nochmal genau an: M und N sind vorgegeben. Da steht, dass M der Definitionsbereich der Funktion f ist und dass alle Werte in N liegen, also der Wertebereich $f(M)$ von f einen Teilmenge von N ist.

Mal dir doch einfach mal in ganz klassischer Manier die Mengen M, N, f(M) und A als Kreise oder sonstige Figuren auf.

1. Was ist in deiner Zeichnung [mm] $M\backslash [/mm] A$ ? Was ist [mm]f (M\backslash A)[/mm] ?

2. Was ist f(A)? Was ist also [mm]N\backslash f (A)[/mm] ?

3. Was ist der Unterschied zwischen den beiden möglichen Fällen $f(M)=N$ (f surjektiv) und [mm] $f(M)\not=N$ [/mm] ?

Viele Grüße
   Rainer

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de