www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Mengen
Mengen < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengen: Mengen skizzieren
Status: (Frage) beantwortet Status 
Datum: 13:43 Mo 15.10.2012
Autor: DarkJiN

Aufgabe
Skizzieren Sie die folgende Menge(n) :

a)

[mm] M_{1}= \{x,y\} \in \IR^2 [/mm] | y=3 und [mm] -1\lex\le2 [/mm]

Hab jetzt erstmal nur die erste Menge aufgeschrieben. Ich hab heute in der Vorlesung gefehlt und leider gar keine Ahnugn was damit gemeint ist, wenn es heißt wir sollen eine Menge skizzieren.

Ist hier ein Mengen Diagramm gefragt, oder wie?

        
Bezug
Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:46 Mo 15.10.2012
Autor: pits

Hallo DarkJin,

da es sich um eine Menge im [mm] $\IR^2$ [/mm] handelt, kann man diese Menge auf einem Blatt zeichnen. Zeichne ein Koordinatensystem und dann die Menge ein (also alle Punkte, die in der Menge sind).

Gruß
pits

Bezug
                
Bezug
Mengen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:47 Mo 15.10.2012
Autor: DarkJiN

Vielen dank.

So einfach ist das also :D

Bezug
                
Bezug
Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:52 Mo 15.10.2012
Autor: DarkJiN

Sprich ich trag die Punkte

[mm] P_{1}(-1|3) [/mm]
[mm] P_{2}(0|3) [/mm]
[mm] P_{3}(1|3) [/mm]
[mm] P_{4}(2|3) [/mm]

ein?

Bezug
                        
Bezug
Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:54 Mo 15.10.2012
Autor: Diophant

Hallo,

> Sprich ich trag die Punkte
>
> [mm]P_{1}(-1|3)[/mm]
> [mm]P_{2}(0|3)[/mm]
> [mm]P_{3}(1|3)[/mm]
> [mm]P_{4}(2|3)[/mm]
>
> ein?

Nö. Steht da irgendetwas von ganzen Zahlen? Es geht um eine Teilmenge des [mm] \IR^2 [/mm] und die x-Werte sind als Intervall angegeben!


Gruß, Diophant


Bezug
                        
Bezug
Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:58 Mo 15.10.2012
Autor: fred97


> Sprich ich trag die Punkte
>
> [mm]P_{1}(-1|3)[/mm]
>  [mm]P_{2}(0|3)[/mm]
>  [mm]P_{3}(1|3)[/mm]
>  [mm]P_{4}(2|3)[/mm]
>  
> ein?


So

  

$ [mm] M_{1}= \{x,y\} \in \IR^2 [/mm] $ | y=3 und $ [mm] -1\lex\le2 [/mm] $

hast Du das oben geschrieben. Das wolltest Du sicher nicht, sondern so:

  $ [mm] M_{1}= \{(x,y) \in \IR^2 | y=3 ~~und~~ -1\le x\le2 \} [/mm] $

Diese Menge besteht aus den Punkten (x|3) , wobei x zwischen -1 und 2 läüft.

Zeichne das mal.

FRED


Bezug
                                
Bezug
Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:12 Mo 15.10.2012
Autor: DarkJiN

du hast natürlich recht Fred. Gemeint war:
$ [mm] M_{1}= \{(x,y) \in \IR^2 | y=3 ~~und~~ -1\le x\le2 \} [/mm] $

Also ist einfach die Gerade gefragt, die auf y=3 parallel zur x-Achse verläuft?

Bezug
                                        
Bezug
Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:26 Mo 15.10.2012
Autor: schachuzipus

Hallo DarkJin,

> du hast natürlich recht Fred. Gemeint war:
> [mm]M_{1}= \{(x,y) \in \IR^2 | y=3 ~~und~~ -1\le x\le2 \}[/mm]
>
> Also ist einfach die Gerade gefragt, die auf y=3 parallel
> zur x-Achse verläuft?

Nein, dann hättest du als Bedingung für [mm]x[/mm]:

[mm]-\infty \ < \ x \ < \infty[/mm]

Hier bist du aber doch mit den x-Werten zwischen [mm]-1[/mm] und [mm]2[/mm] eingeschränkt.

Das ist hier also keine Gerade, sondern ...

Gruß

schachuzipus


Bezug
                                                
Bezug
Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:16 Mo 15.10.2012
Autor: DarkJiN

eine Strecke natürlich. Eigentlich war das auch gemeint. :D

oder ist was anderes gemeint?

Bezug
                                                        
Bezug
Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:24 Mo 15.10.2012
Autor: fred97


> eine Strecke natürlich. Eigentlich war das auch gemeint.
> :D
>  
> oder ist was anderes gemeint?

nein.

FRED


Bezug
        
Bezug
Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:44 Mo 15.10.2012
Autor: DarkJiN

Aufgabe
[mm] M_{4}= [/mm] {(x,y) [mm] \in \IR^2 [/mm]  |  [mm] |y|+|x|\ge2 [/mm] }

Ich hab da erstmal ein paar Wertepaare aufgestellt:

x    y
-2  0
-1  1
-1 -1
0 -2
0   2
1 -1
1  1
2  0

aber da ja (x,y) [mm] \in \IR^2 [/mm] ist da jede Menge dazwischen aber weil einem x Wert mehrere y Werte zugeordnet werden kann ich ja keine Strecke zeichnen, oder?

Bezug
                
Bezug
Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:04 Mo 15.10.2012
Autor: schachuzipus

Hallo nochmal,

> [mm]M_{4}=[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

{(x,y) [mm]\in \IR^2[/mm] | [mm]|y|+|x|\ge2[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

}

> Ich hab da erstmal ein paar Wertepaare aufgestellt:
>
> x y
> -2 0
> -1 1
> -1 -1
> 0 -2
> 0 2
> 1 -1
> 1 1
> 2 0

Ob das hilft?

>
> aber da ja (x,y) [mm]\in \IR^2[/mm] ist da jede Menge dazwischen
> aber weil einem x Wert mehrere y Werte zugeordnet werden
> kann ich ja keine Strecke zeichnen, oder?

Eine Möglichkeit: Überlege dir mal, wie die Menge [mm]\{(x,y)\in\IR^2:|y|+|x| \ \red{<} \ 2\}[/mm] aussieht, dann ist schnell klar, wie deine Menge aussieht...

Anders: Du könntest mal systematisch rangehen und die Beträge auflösen.

Mache dazu mehrere Fallunterscheidungen.


1) [mm]y\ge 0[/mm], dann ist [mm]|y|=y[/mm] und du hast [mm]y\ge 2-|x|[/mm]

Nun 1a),1b) für [mm]x\ge 0[/mm], [mm]x<0[/mm] ...

2) [mm]y<0[/mm] usw.

Gehe mal die Fälle langsam und systematisch durch.

Auf wolfram alpha kannst du dir das auch mal plotten lassen zur Kontrolle ...

Gruß

schachuzipus


Bezug
                        
Bezug
Mengen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:12 Mo 15.10.2012
Autor: DarkJiN

Also, ich rechne mein Übungsblatt jetzt schon seit 3 h durch und langsam macht mein Kopf zu und vllt kann ich deswegen mit deiner Erklärung nichts mehr anfangen.
Aber wenn ich das plotte bekomm ich genau dasselbe wie, hier auf meinem Blatt nachdem ich meine Wertepaare eingezeichnet und miteinander verbunden habe.

Bezug
                                
Bezug
Mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:19 Mo 15.10.2012
Autor: schachuzipus

Hallo nochmal,

> Also, ich rechne mein Übungsblatt jetzt schon seit 3 h
> durch und langsam macht mein Kopf zu und vllt kann ich
> deswegen mit deiner Erklärung nichts mehr anfangen.
> Aber wenn ich das plotte bekomm ich genau dasselbe wie,
> hier auf meinem Blatt nachdem ich meine Wertepaare
> eingezeichnet und miteinander verbunden habe.

Aus den paar Punkten bekommst du eine Fläche?!

Und du wirst doch nicht 3h gebraucht haben, um die paar Werte auszurechnen?! ;-)

Es ist [mm] $\{(x,y)\in\IR^2:|x|+|y| \ \red{=} \ 2\}$ [/mm] die Rand einer Raute mit Mittelpunkt $(0,0)$, die auf der Spitze steht und deren Spitzen 2 Einheiten in die x- und y-Richtungen gehen.

Mit [mm] $\ge$ [/mm] ist das dann der Rand und alles Äußere dieser Raute.

Dazu überlegt man sich halt durch Auflösen der Beträge, was $A$ ist und schließt von "=" auf [mm] "$\ge$" [/mm]

Mache also die Untersuchung für "=" und du hast es.

Das dauert keine 10 Minuten mehr ;-)

Gruß

schachuzipus



Bezug
                                        
Bezug
Mengen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:35 Mo 15.10.2012
Autor: DarkJiN

vielen vielen dank für deine Hilfe.
Aber immo bekomm cih keinen klaren Gedanken ich brauch ne Pause und beschäftige mich später nocheinmal damit.

Naja vorher hab ich die anderen Aufgabe gemacht. ;)

Musste noch Terme vereinfachen andere Mengen zeichnen und entscheiden ob bestimmte Abbildungen und Zuordnungen bijektiv, injektiv oder surektiv sind. Und ob es ne umkehrfunktion gibt und wie diese lautet. Und da ich nicht in der Vorlesung war musste ich mir immer erst erarbeiten was das alles war :D
Deswegen hab ich jetzt bestimmt 3 h gearbeitet und mein Kopf dampft. Also gönn ich mir jetzt erstmal ne Pause und rechne deine Lösung später mal durch, hoffe du nimmst mir das jetzt nicht krum.
Aber danke für deine Mühen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de