www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Mengen / kartesisches Produkt
Mengen / kartesisches Produkt < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengen / kartesisches Produkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:01 Di 01.11.2005
Autor: metleck

Hi !
Ich hab da ne Aufgabe mit der ich ganich klar komme.
WIe beweist man denn sowas???
AxB=leere Menge /gdw (A=leere Menge oder B =leere Menge)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Mengen / kartesisches Produkt: Antwort
Status: (Antwort) fertig Status 
Datum: 17:08 Di 01.11.2005
Autor: DaMenge

Hi und [willkommenmr],

du musst zwei Richtungen zeigen:
1) wenn A oder B leer sind, dann ist AxB auch leer

2) wenn AxB leer ist, dann muss mind. einer der beiden MEngen A oder B leer sein.

zu 1) musst du nur die Definition von AxB einsetzen - das ist die einfache Richtung.

zu 2) dies würde ich per Widerspruch machen : angenommen beide wären nicht leer - was ist dann AxB...

versuche dich mal und schreib es hier hin.

viele Grüße
DaMenge

Bezug
                
Bezug
Mengen / kartesisches Produkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:35 Di 01.11.2005
Autor: metleck

das hab ich mir auch schon gedacht alles.
ich weiß halt nur nich wie ich das mache

Bezug
        
Bezug
Mengen / kartesisches Produkt: Tipp
Status: (Antwort) fertig Status 
Datum: 07:59 Mi 02.11.2005
Autor: Becks

AxB=leere Menge /gdw (A=leere Menge oder B =leere Menge)

Hallo,

schau dir doch einfach die Definition an.
AxB := {(a,b) | a [mm] \in [/mm] A, b [mm] \in [/mm] B}

Das bedeutet, wenn A eine leere Menge ist oder B eine leere Menge ist, kannst du keine Paare der Form (a,b) bilden. Da ja entweder A keine Elemente enthält oder B. (bis auf die leere Menge)

Hilft dir das weiter?

Bezug
                
Bezug
Mengen / kartesisches Produkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:01 Mi 02.11.2005
Autor: metleck

das hab ich mir angeguckt aber wie soll ich das dann beweisen??? ich kann janicht einfach nen satz hinschreiben...

Bezug
                        
Bezug
Mengen / kartesisches Produkt: Antwort
Status: (Antwort) fertig Status 
Datum: 11:06 Mi 02.11.2005
Autor: Stefan

Hallo!

Doch, genauso geht es. :-)

Im Falle $A [mm] \ne \emptyset$ [/mm] und $B [mm] \ne \emptyset$ [/mm] gibt es $a [mm] \in [/mm] A$ und $b [mm] \in [/mm] $B. Dann ist $(a,b) [mm] \in [/mm] A [mm] \times [/mm] B [mm] \ne \emptyset$. [/mm]

Fertig (für diese Beweisrichtung).

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de