www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Mengen skizzieren
Mengen skizzieren < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengen skizzieren: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 12:27 Mi 27.11.2019
Autor: bondi

Aufgabe
Sei $ [mm] D=\{(x,y) \in \IR^2 | \medspace 1 < |x| + |y| \le 2 \} [/mm] $

Ist D i) offen, ii) abgeschlossen, iii) beschränkt, iv) kompakt?



Meine Lösung:

i) D ist 'nicht offen', denn bspw. $ ] [mm] \medspace 2-\epsilon, 2+\epsilon \medspace [/mm] [ [mm] \medspace \not\subseteq [/mm] D [mm] \medspace \forall \medspace \epsilon [/mm] > 0. $

ii) Aus i) weiß ich, dass D 'nicht offen' ist. Somit ist $ [mm] \IR \medspace \backslash\medspace [/mm] D $ 'offen'. Wenn das Komplement von D 'offen', so ist D 'abgeschlossen'.

An der Stelle widerspricht mir mein Kollege. Er sagt: Wenn D 'nicht offen', so ist das Komplement 'nicht abgeschlossen' und umgekehrt.

iii) D ist beschränkt, denn $ |x| [mm] \le2 \medspace \forall \medspace [/mm]  x [mm] \in [/mm] D. $

iv) D ist kompakt, weil abgeschlossen und beschränkt.

Bin gespannt auf Euer Statement :)

LG, bondi

        
Bezug
Mengen skizzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 12:56 Mi 27.11.2019
Autor: Gonozal_IX

Hiho,

> Sei [mm]D=\{(x,y) \in \IR^2 | \medspace 1 < |x| + |y| \le 2 \}[/mm]

Halten wir fest: D ist also eine Teilmenge des [mm] $\IR^2$ [/mm] .

> i) D ist 'nicht offen', denn bspw. [mm]] \medspace 2-\epsilon, 2+\epsilon \medspace [ \medspace \not\subseteq D \medspace \forall \medspace \epsilon > 0.[/mm]

$] [mm] \medspace 2-\epsilon, 2+\epsilon \medspace [/mm] [$ ist offensichtlich ein Intervall, also eine Teilmenge von [mm] $\IR$, [/mm] D ist, wie oben erwähnt, eine Teilmenge des [mm] $\IR^2$. [/mm]

Dein Aufschrieb  [mm]] \medspace 2-\epsilon, 2+\epsilon \medspace [ \medspace \not\subseteq D [/mm] macht also gar keinen Sinn.

Deine Idee dahinter aber vllt. schon.
Du willst also einen gewählten Punkt nehmen und zeigen, dass in jeder [mm] $\varepsilon$-Umgebung [/mm] um den Punkt einer liegt, der nicht in D liegt.

Dann schreibe das doch so auf!!
Sage, welchen Punkt du betrachtest, nimm eine beliebige [mm] $\varepsilon$-Umgebung [/mm] darum und zeige, dass dort ein Punkt drin liegt, der nicht in D liegt, indem du die Bedingung von D nachrechnest.

> ii) Aus i) weiß ich, dass D 'nicht offen' ist.

Wenn du das korrekt zeigst: Ja, D ist nicht offen.

> Somit ist [mm]\IR \medspace \backslash\medspace D[/mm] 'offen'. Wenn das
> Komplement von D 'offen', so ist D 'abgeschlossen'.
>  
> An der Stelle widerspricht mir mein Kollege. Er sagt: Wenn
> D 'nicht offen', so ist das Komplement 'nicht
> abgeschlossen' und umgekehrt.

Dein Kollege hat recht.
Machen wir es einfach: Wir bleiben mal in [mm] $\IR$ [/mm] und betrachten das nicht-offene Intervall $[0,1[$.
Das Komplement dazu ist [mm] $\IR\setminus[0,1[\quad [/mm] = [mm] \quad]-\infty,0[ \;\cup\; [1,\infty[$ [/mm]
Siehst du selbst, dass das Komplement ebenfalls nicht offen ist? (Tipp: Leg mal eine [mm] $\varepsilon$-Umgebung [/mm] um $1 [mm] \in \IR\setminus [/mm] [0,1[$

"offen" und "abgeschlossen" sind nicht zwei gegensätzliche Dinge.
Mengen können sowohl offen als auch abgeschlossen sein (z.B. [mm] $\IR$) [/mm] und andere sowohl nicht-offen als auch nicht-abgeschlossen (z.B. $[0,1[$ in [mm] $\IR$) [/mm]

Das Komplement einer
- offenen Menge ist dann abgeschlossen
- abgeschlossenen Menge ist dann offen
- nicht-offenen Menge ist dann nicht-abeschlossen
- nicht-abeschlossenen Menge ist dann nicht-offen

> iii) D ist beschränkt, denn [mm]|x| \le2 \medspace \forall \medspace x \in D.[/mm]

Der Aufschrieb ist grottig. Du betrachtest doch Elemente im [mm] $\IR^2$. [/mm]
Zwar schreibt man später nur noch: "Sei [mm] $x\in\IR^2$, [/mm] wenn man weiß, was man tut, das bezweilfe ich aber bei dir.
Daher beantworte mal die Frage: Was soll denn $|x|$ sein für ein Element aus [mm] $\IR^2$? [/mm]

> iv) D ist kompakt, weil abgeschlossen und beschränkt.

netter Versuch… den Satz brauchst du nachher zwar, aber das machen wir mal nochmal, wenn i), ii) und iii) sitzen.

Gruß,
Gono

Bezug
        
Bezug
Mengen skizzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 13:46 Mi 27.11.2019
Autor: fred97

Gono hat ja schon alles Wichtige erzählt und einiges korrigiert.

Zwei Bemerkungen von mir.

1. Ist $ M [mm] \subset \IR^n$, [/mm] so gilt

M ist sowohl offen als auch abgeschlossen [mm] \gdw [/mm] $M= [mm] \emptyset$ [/mm] oder $M= [mm] \IR^n.$ [/mm]

2. Manchmal gehts mit Folgen einfacher. Ist $ M [mm] \subset \IR^n$, [/mm] so gilt: M ist abgeschlossen [mm] \gdw [/mm] der Limes jeder konvergenten Folge in M gehört zu M.

Damit aus gestattet schauen wir uns Deine Menge D und ihr Komplement $C:= [mm] \IR^2 \setminus [/mm] D$ an.

Wir setzen [mm] $u_n:=(1+\frac{1}{n}, [/mm] 0)$. Dann ist [mm] $(u_n)$ [/mm] eine konvergente Folge in D mit [mm] $\lim_{n \to \infty}u_n=(1,0)$. [/mm] Nun ist $(1,0) [mm] \notin [/mm] D$, also ist D nicht abgeschlossen.

Setzen wir  [mm] $v_n:=(2+\frac{1}{n}, [/mm] 0)$. Dann ist [mm] $(v_n)$ [/mm] eine konvergente Folge in  C mit [mm] $\lim_{n \to \infty}v_n=(2,0)$. [/mm] Nun ist $(2,0) [mm] \notin [/mm] C$, also ist C nicht abgeschlossen.  Damit ist D nicht offen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de