www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Mengenbeweise
Mengenbeweise < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengenbeweise: Frage
Status: (Frage) beantwortet Status 
Datum: 12:15 Sa 23.10.2004
Autor: steelscout

Hi,
hab hier nen ganzen Haufen Mengenbeweise zu bewältigen, allerdings vorher nie mit sowas zu tun gehabt. Ich weiß zwar jetzt, was die Sachverhalte ausdrücken, aber beweisen?
Z.b. der Beweis das X [mm] \cap [/mm] Y  [mm] \subseteq [/mm] X  [mm] \subseteq [/mm] X [mm] \cup [/mm] Y
(X,Y: Mengen)
Wenn man es sich vorstellt total logisch. Aber wie soll ich sowas nachweisen. Ich bitte um nen Stoß in die richtige Richtung *g*

thx steele

Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Mengenbeweise: Tipp!
Status: (Antwort) fertig Status 
Datum: 12:22 Sa 23.10.2004
Autor: Stefan

Hallo steelscout!

Du musst zeigen, dass jedes Element aus $X [mm] \cap [/mm] Y$ in $X$ liegt und jedes Element aus $X$ in $X [mm] \cup [/mm] Y$.

Das ist einfach, aber man muss es sauber aufschreiben (und daraum geht es bei solchen Aufgaben zu Beginn des Studiums).

Also:


$z [mm] \in [/mm] X [mm] \cap [/mm] Y$

[mm] $\Rightarrow \quad [/mm] [(z [mm] \in [/mm] X) \ [mm] \wedge [/mm] \ (z [mm] \in [/mm] Y)]$

[mm] $\Rightarrow \quad [/mm] z [mm] \in [/mm] X$

[mm] $\Rightarrow \quad [/mm] [(z [mm] \in [/mm] X)\  [mm] \vee [/mm] \ (z [mm] \in [/mm] Y)]$

[mm] $\Rightarrow \quad [/mm] z [mm] \in [/mm] X [mm] \cup [/mm] Y$.


Vermutlich hast du noch ähnliche Aufgaben, an denen du solche Beweise jetzt mal selbstständig üben kannst. :-)

Liebe Grüße
Stefan

Bezug
                
Bezug
Mengenbeweise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:14 Sa 23.10.2004
Autor: DSJuster

Was bedeuten

[mm] \subseteq [/mm]
[mm] \supseteq [/mm]
[mm] \wedge [/mm]
[mm] \vee [/mm]

Bezug
                        
Bezug
Mengenbeweise: Erklärung
Status: (Antwort) fertig Status 
Datum: 17:41 Sa 23.10.2004
Autor: Hanno

Hallo DSJuster.

Um mal ebenso kurz zu antworten, wie du gefragt hast:
A ist eine Teilmenge von B [mm] $:\gdw A\subseteq [/mm] B [mm] \gdw B\supseteq [/mm] A [mm] \gdw:$ [/mm] B ist eine Obermenge von A.
A und B [mm] $:\gdw A\wedge [/mm] B$
A oder B [mm] $:\gdw A\vee [/mm] B$.

Also ich persönlich streube mich, gegen solche aus zwei Wörtern bestehenden "Fragen" ordentliche Antworten zu geben. Ich weiß nicht, wie andere das sehen, aber wenn das so weiter geht war das meine letzte Antwort auf deine Fragen.

Gruß,
Hanno

Bezug
                                
Bezug
Mengenbeweise: Kleine Nachfrage
Status: (Frage) beantwortet Status 
Datum: 19:10 Sa 23.10.2004
Autor: steelscout

Erstmal vielen Dank, der Ansatz hat mir sehr weitergeholfen!

Nur ein Fragezeichen bleibt noch:
An anderer Stelle wird gefragt "Man zeige weiter, aus X [mm] \subseteq [/mm] Y folgt A [mm] \setminus [/mm] Y  [mm] \subseteq [/mm] A [mm] \setminus [/mm] X"

Ich hab also versucht:
z [mm] \in [/mm] X also auch z [mm] \in [/mm] Y, da X [mm] \subseteq [/mm] Y
-> z  [mm] \not\in [/mm] A [mm] \setminus [/mm] Y und z [mm] \not\in [/mm] A [mm] \setminus [/mm] X
Aber daraus kann ich nicht zeigen das A [mm] \setminus [/mm] Y  [mm] \subseteq [/mm] A [mm] \setminus [/mm] X, oder?

Bezug
                                        
Bezug
Mengenbeweise: idee
Status: (Antwort) fertig Status 
Datum: 19:22 Sa 23.10.2004
Autor: andreas

wenn du zeigen willst, dass [m] A \subseteq B [/m] gilt, dann bist du meistens gut beraten zu zeigen:[m] x \in A \Longrightarrow x \in B [/m].

also betrachte nun mal [m]z \in A \setminus Y \Longleftrightarrow (z \in A) \wedge (z \not\in Y) [/m] ...

jetzt musst du nur noch begründen, warum [m] z \not\in X [/m] und schon bist du fertig!


grüße
andreas

Bezug
                                                
Bezug
Mengenbeweise: letzte Frage
Status: (Frage) beantwortet Status 
Datum: 22:33 So 24.10.2004
Autor: steelscout

Wie verhält es sich beim Beweis von Mengengleichheit? Analog zum Teilmengenbeweis?
Also wenn ich zeigen soll, dass aus X [mm] \subseteq [/mm] Y folgt X  [mm] \cap [/mm] Y = X bzw. X [mm] \cup [/mm] Y = Y , reicht es dann wieder zu sagen
es gibt ein z [mm] \in [/mm] X -> damit auch z [mm] \in [/mm] Y
damit auch z  [mm] \in [/mm] X  [mm] \cap [/mm] Y bzw. X [mm] \cup [/mm] Y
Genügt das oder wie beweise ich die Gleichheit mit X bzw. Y?

Bezug
                                                        
Bezug
Mengenbeweise: Hinweis
Status: (Antwort) fertig Status 
Datum: 14:33 Mo 25.10.2004
Autor: Stefan

Hallo!

Um die Gleichheit

$X [mm] \cap [/mm] Y = X$

zu beweisen, musst du zwei Dinge zeigen:

1) $X [mm] \cap [/mm] Y [mm] \subset [/mm] Y$,
2) $X [mm] \subset [/mm] X [mm] \cap [/mm] Y$.

Jetzt zeigst du 1) und 2) wie gewohnt.

Liebe Grüße
Stefan



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de