www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Naive Mengenlehre" - Mengenlehre
Mengenlehre < naiv < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengenlehre: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:23 Di 01.03.2011
Autor: Mistasy

Aufgabe
Die Menge der natürlichen Zahlen

Aufgabe 1.2.1

Man bestimme die Anzahl der Elemente von der  Menge aller natürlichen Zahlen zwischen 1 und 1000, deren Dezimaldarstellung die Ziffer 5 nicht enthält.

ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hab den Lösungszettel vor mir liegen und mein Prof kommt auf 729. Bloß irgendwie hab ich das nicht ganz richtig hinbekommen. Wär auf jedenfall cool, wenn mir das nochmal jemand erklären könnte. Komm irgendwie auf 820.

        
Bezug
Mengenlehre: Antwort
Status: (Antwort) fertig Status 
Datum: 18:35 Di 01.03.2011
Autor: abakus


> Die Menge der natürlichen Zahlen
>  
> Aufgabe 1.2.1
>  
> Man bestimme die Anzahl der Elemente von der  Menge aller
> natürlichen Zahlen zwischen 1 und 1000, deren
> Dezimaldarstellung die Ziffer 5 nicht enthält.
>  ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Hab den Lösungszettel vor mir liegen und mein Prof kommt
> auf 729. Bloß irgendwie hab ich das nicht ganz richtig
> hinbekommen. Wär auf jedenfall cool, wenn mir das nochmal
> jemand erklären könnte. Komm irgendwie auf 820.  

Hallo,
betrachten wir mal die Zahlen von 0 bis 999 und schauen, wie viele davon keine 5 enthalten. Dabei lassen wir mal führende Nullen zu (also 000, 001, ..., 999).
Das dürfen wir, weil z.B. 027 genausowenig eine 5 enthält wie einfach 27.
Solche dreistellige Zahlen dürfen an jeder Stelle eine von 9 möglichen  Ziffern haben (alle Ziffern außer 5).
Das gibt 9*9*9=729 Möglichkeiten.
Nun ist zwar die 0 nicht mit dabei, aber dafür die 1000. Es bleibt also bei 729 Möglichkeiten, nicht die 5 zu bekommen.
Gruß Abakus


Bezug
                
Bezug
Mengenlehre: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:29 Mi 02.03.2011
Autor: Mistasy

Irgendwie versteh ich trotzdem noch nicht warum man jetzt 9 mal 9 mal 9 nimmt. Könntest du das einfach nochmal erläutern?

Bin jetzt zwar auch nochmal alle Zahlen durchgegangen und ich komm jetzt auch auf das richtige Ergebnis, bloß ich frage mich einfach noch, was das mit der 9 auf sich hat???

Bezug
                        
Bezug
Mengenlehre: Antwort
Status: (Antwort) fertig Status 
Datum: 22:40 Mi 02.03.2011
Autor: Al-Chwarizmi


> Irgendwie versteh ich trotzdem noch nicht warum man jetzt 9
> mal 9 mal 9 nimmt. Könntest du das einfach nochmal
> erläutern?
>
> Bin jetzt zwar auch nochmal alle Zahlen durchgegangen und
> ich komm jetzt auch auf das richtige Ergebnis, bloß ich
> frage mich einfach noch, was das mit der 9 auf sich hat???


An jeder der drei Stellen der Zahl (betrachten wir zunächst
die Zahlen von 000 bis 999 !) wären ja grundsätzlich
10 Ziffern möglich. Also gibt es insgesamt 10*10*10=1000
Zahlen von 0 bis und mit 999.
Ist die Ziffer 5 "verboten", so sind an jeder Stelle eben nur
noch 10-1=9 Ziffern erlaubt. Insgesamt haben wir also in
der Folge der Zahlen von 000 bis und mit 999 genau 9*9*9
Zahlen, welche keine Ziffer 5 enthalten.
Da weder die Zahl 000 noch die Zahl 1000 eine 5 enthalten,
ist es einerlei, ob man von der Menge der Zahlen von 000
bis 999 oder von den Zahlen von 001 bis 1000 ausgeht.

LG
  


Bezug
                                
Bezug
Mengenlehre: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:14 Do 03.03.2011
Autor: Mistasy

Vielen Dank für das nette erläutern... Habe es verstanden. Dankeschön !! :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de