www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Naive Mengenlehre" - Mengenoperationen
Mengenoperationen < naiv < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengenoperationen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:29 Fr 14.08.2009
Autor: Pacapear

Aufgabe
Seien $A$, $B$ und $C$ Teilmengen einer Menge $X$.

a) Zeige $ A [mm] \cap [/mm] (B [mm] \cup [/mm] C) = (A [mm] \cap [/mm] B) [mm] \cup [/mm] (A [mm] \cap [/mm] C) $

b) Gilt $ X-(A [mm] \cap B)=\begin{cases} (X-A) \cup (X-B), & \mbox{oder} \\ (X-A) \cap (X-B), & \mbox{oder} \\ (X-A) \cap B \end{cases} [/mm] $

c) Seien nun $A$ und $B$ zusätzlich endlich. Zeige $ |A| + |B| = |A [mm] \cap [/mm] B| + |A [mm] \cup [/mm] B| $

Hallo zusammen.

Ich habe große Probleme bei diesen Aufgaben.

Also bei der a) weiß ich überhaupt nicht wie ich ansetzen soll.

Alles was wir zum Thema Vereinigung und Durchschnitt hatten waren die Definitionen. Aber irgendwie komm ich damit nicht weiter.

Bei der b) hab ich mir mal ein Bildchen gemalt, und von dem her würde ich tippen, dass es der erste Fall sein muss, also $ X-(A [mm] \cap [/mm] B) = (X-A) [mm] \cup [/mm] (X-B) $. Aber wir kann ich das formal belegen?

Bei der c) hab ich mir folgendes überlegt: Ich setze $|A|=n$ und $|B|=m$ weil die Mengen ja unterscheidlich sind. Dann hab ich mir ein Bild mit einem Beispiel zur Mächtigkeit der Vereinigung gemacht und gesehen, dass man dabei nicht alle Elemente zählen darf. Ich glaube, die Elemente, die im Schnitt liegen, muss man einmal wieder abziehen, weil man sie sonst doppelt zählen würde.

Dann bekomme ich das hier:

$ n+m =  |A [mm] \cap [/mm] B| + (|A| + |B| - |A [mm] \cap [/mm] B|) = |A [mm] \cap [/mm] B| + (n + m - |A [mm] \cap [/mm] B|) = |A [mm] \cap [/mm] B| + n + m - |A [mm] \cap [/mm] B| = n+m $

Ist das so richtig?

Danke für eure Hilfe.

LG, Nadine

        
Bezug
Mengenoperationen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:48 Fr 14.08.2009
Autor: malamala

Die Gleichheit von zwei Mengen kannst du eigentlich immer (mal empfiehlt es sich mal nicht) mit zwei Inklusionen zeigen. D. h. bei a) setzt du an mit Sei x Element von$  A [mm] \cap [/mm] (B [mm] \cup [/mm] C)$ daraus folgt, x ist in A und x ist in B und/oder C. Dann ne Fallunterscheidung und dann hast du es eigentlich sofort... und das ganze dann nochmal in die andere Richtung.

Bezug
                
Bezug
Mengenoperationen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:12 Fr 14.08.2009
Autor: Pacapear

Hallo!



D. h. bei a) setzt du an mit Sei x Element von[mm] A \cap (B \cup C)[/mm]

> daraus folgt, x ist in A und x ist in B und/oder C. Dann ne
> Fallunterscheidung und dann hast du es eigentlich sofort...

Also ich bin jetzt so weit:

Sei $ x [mm] \in [/mm] A [mm] \cap [/mm] (B [mm] \cup [/mm] C) $

$ [mm] \Rightarrow [/mm] x [mm] \in [/mm] A [mm] \text{ und } [/mm] x [mm] \in [/mm] (B [mm] \cup [/mm] C) $

$ [mm] \Rightarrow [/mm] x [mm] \in [/mm] A [mm] \text{ und } [/mm] (x [mm] \in [/mm] B [mm] \text{ oder } [/mm] x [mm] \in [/mm] C)$

Jetzt weiß ich nicht mehr weiter. Was muss ich machen?



Ich glaube, dass ich auch noch ein Problem mit der Definition der Vereinigung habe:

Sie lautet ja: $ A [mm] \cup [/mm] B = [mm] \{ x | x \in A \text{ oder } x \in B \} [/mm] $

Übersetzt heißt das ja: $x$ liegt in $A$ oder in $B$ oder in beiden.

Das mit dem "oder in beidem", dieses nicht-exklusive oder, das versteh ich nicht. warum gibt es dieses "in beidem"?

Wenn ich das exklusive oder nehme, also sage, $x$ liegt entweder in $A$ oder in $B$, dann überdeckt dass doch auch den Schnitt (also das "in beidem"), weil die Menge $A$ den Schnitt überdeckt und die Menge $B$ doch auch den Schnitt überdeckt. Das verstehe ich nicht...



Könnt ihr mir helfen?

LG, Nadine

Bezug
                        
Bezug
Mengenoperationen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:38 Fr 14.08.2009
Autor: malamala

Sei nun also x in A und x in B... und dann werfen wir einen Blick auf die andere Seite. Ist nämlich x in A und x in B, dann ist es auch in deren Schnitt ... und damit auch in einer beliebigen Vereinigung dieses Schnittes mit irgend einer anderen Menge.
Sei nun x in A und in C, zack schon ist es im anderen Schnitt...

... und falls es in A,B und C ist, dann ist es halt in beiden Schnitten und damit natürlich auch in deren Vereinigung

Jetzt fehlt noch die andere Seite


(tut mir übrigens leid wenn es etwas unübersichtlich ist, ich finde das schreiben mit dem Formeleditor etwas umständlich)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Naive Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de