www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Mengentheoretischer Beweis
Mengentheoretischer Beweis < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengentheoretischer Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:06 Mi 09.11.2011
Autor: Ferolei

Aufgabe
Beh. : A \ B = A\ (A [mm] \cap [/mm] B)

Hallo,

kurze Frage... wenn ich das zeigen will (angenommen, ich starte mal mit der linken Seite), kann ich dann, wenn wir die entsprechenenden Eigenschaften bewiesen haben, schreiben:

A \ B = A [mm] \cap B^{c} [/mm] = [mm] \emptyset \cup [/mm] A [mm] \cap B^{c} [/mm] = .... usw.

Oder muss ich jedes Mal davor [mm] x\in [/mm] A \ B => [mm] x\in [/mm]  A [mm] \cap B^{c} [/mm] = .... usw.
schreiben?
Bzw. ist eins richtig und eins falsch, oder geht beides?
Vielleicht kann mir kurz jemand erklären, wann ich das so und wann so mache.


LG

        
Bezug
Mengentheoretischer Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 14:12 Mi 09.11.2011
Autor: fred97


> Beh. : A \ B = A\ (A [mm]\cap[/mm] B)
>  Hallo,
>  
> kurze Frage... wenn ich das zeigen will (angenommen, ich
> starte mal mit der linken Seite), kann ich dann,


> wenn wir  die entsprechenenden Eigenschaften bewiesen haben,

Was meinst Du damit ?


> schreiben:
>  
> A \ B = A [mm]\cap B^{c}[/mm] = [mm]\emptyset \cup[/mm] A [mm]\cap B^{c}[/mm] = ....
> usw.

Wenn es richtig weitergeht ist das O.K.

>  
> Oder muss ich jedes Mal davor [mm]x\in[/mm] A \ B => [mm]x\in[/mm]  A [mm]\cap B^{c}[/mm]
> = .... usw.
>  schreiben?


Müssen mußt Du nichts

>  Bzw. ist eins richtig und eins falsch, oder geht beides?

Es geht beides.


>  Vielleicht kann mir kurz jemand erklären, wann ich das so
> und wann so mache.

Dafür gibts kein Kochrezept. Wie Du es machst hängt von der Situation ab. Und es ist Geschmacksache

FRED

>  
>
> LG


Bezug
                
Bezug
Mengentheoretischer Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:16 Mi 09.11.2011
Autor: Ferolei

Danke dir....

d.h. aber, wenn ich sage, dass Mengen gleich sind bzw. deren Verknüpfungen wie bei A \ B = A \ (A [mm] \cap [/mm] B) = ...
schreibe ich nie x [mm] \in [/mm] davor, oder?

Wenn ich Folgerungen machen MUSS das aber da stehen !?

LG

Bezug
                        
Bezug
Mengentheoretischer Beweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:23 Mi 09.11.2011
Autor: Ferolei

Darf ich das dann so machen?

Sei x [mm] \in [/mm] A \ B => [mm] x\in [/mm] A [mm] \cap B^{c} [/mm] => [mm] x\in \emptyset \cup [/mm] (A [mm] \cap B^{c}) [/mm]
=> [mm] x\in [/mm] (A [mm] \cap A^{c}) \cup [/mm] (A [mm] \cap B^{c}) [/mm] => [mm] x\in [/mm] A [mm] \cap (A^{c} \cup B^{c}) [/mm] => [mm] x\in [/mm] A [mm] \cap [/mm] (A [mm] \cap B)^{c} [/mm] => [mm] x\in [/mm] A \ (A [mm] \cap B)^{c} [/mm]  ????


LG

Bezug
                                
Bezug
Mengentheoretischer Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 00:38 Do 10.11.2011
Autor: kamaleonti


> Darf ich das dann so machen?
>  
> Sei x [mm]\in[/mm] A \ B => [mm]x\in[/mm] A [mm]\cap B^{c}[/mm] => [mm]x\in \emptyset \cup[/mm]
> (A [mm]\cap B^{c})[/mm]  => [mm]x\in[/mm] (A [mm]\cap A^{c}) \cup[/mm] (A [mm]\cap B^{c})[/mm] => [mm]x\in[/mm] A [mm]\cap (A^{c} \cup B^{c})[/mm] => [mm]x\in[/mm] A [mm]\cap[/mm] (A [mm]\cap B)^{c}[/mm] => [mm]x\in[/mm] A \ (A [mm]\cap B)^{\red{c}}[/mm]  ????

Alle deine Schlussfolgerungen sind richtig (bis auf den rot markierten Tippfehler).

LG

Bezug
                        
Bezug
Mengentheoretischer Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 14:30 Mi 09.11.2011
Autor: fred97


> Danke dir....
>  
> d.h. aber, wenn ich sage, dass Mengen gleich sind bzw.
> deren Verknüpfungen wie bei A \ B = A \ (A [mm]\cap[/mm] B) = ...
>  schreibe ich nie x [mm]\in[/mm] davor, oder?
>  
> Wenn ich Folgerungen machen MUSS das aber da stehen !?

Ich mach Dir an obigem Beispiel mal beide Methoden vor.

1. $A [mm] \setminus [/mm] (A  [mm] \cap [/mm] B)= A [mm] \cap [/mm] (A  [mm] \cap B)^c= [/mm]  A [mm] \cap(A^c \cup B^c)= [/mm] (A [mm] \cap A^c) \cup [/mm] (A [mm] \cap B^c)= \emptyset \cup [/mm] (A [mm] \cap B^c)=A \cap B^c= [/mm] A [mm] \setminus [/mm] B$

2. x [mm] \in [/mm] A [mm] \setminus [/mm] B  [mm] \Rightarrow [/mm]   x [mm] \in [/mm] A und x [mm] \notin [/mm] B   [mm] \Rightarrow [/mm]   x [mm] \in [/mm] A und x [mm] \notin [/mm] A [mm] \cap [/mm] B   [mm] \Rightarrow [/mm]   x [mm] \in [/mm] A [mm] \setminus [/mm] (A [mm] \cap [/mm] B).

Wenn Du genau hinschaust, siehst Du, dass man jedes  [mm] \Rightarrow [/mm]  auch umkehren kann (das wird nicht immer so sein !). Also:

x [mm] \in [/mm] A [mm] \setminus [/mm] B  [mm] \gdw [/mm]    x [mm] \in [/mm] A und x [mm] \notin [/mm] B    [mm] \gdw [/mm]   x [mm] \in [/mm] A und x [mm] \notin [/mm] A [mm] \cap [/mm] B    [mm] \gdw [/mm]   x [mm] \in [/mm] A [mm] \setminus [/mm] (A [mm] \cap [/mm] B).

FRED

>  
> LG


Bezug
                                
Bezug
Mengentheoretischer Beweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:56 Do 10.11.2011
Autor: gnom347

Ich nehmen an deine Frage ist, wann du eine vorhandene Mengengleichheit annehmen darfst und wann du die Mengengleichheit explizit noch zeigen musst.
Normalerweise ist es so , das du eine Mengengleichheit dan annehmen darfst, wenn  sie in der Vorlesung (Skript) gezeigt wurde  oder du sie  in einer Übung gezeigt hast.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de