www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mengenlehre" - Mengenverknüpfungen
Mengenverknüpfungen < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengenverknüpfungen: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:15 Mo 29.10.2007
Autor: Betman

Aufgabe
Seien M,N,T Mengen. Zeigen Sie:
[mm] M\cap (N\cup M)=M\cup (N\cap [/mm] M)=M

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Ich "wandel" den ersten teil derMengenverknüpfung erstmal in aussagen um, so dass
[mm] (x\in M\wedge x\in N)\vee (x\in M\wedge x\in [/mm] M)

da [mm] (x\in M\wedge x\in [/mm] M) nur wahr ist für [mm] x\in [/mm] M kann ich nun auch schreiben
[mm] (x\in M\wedge x\in N)\vee x\in [/mm] M
was wiederum zurück zu Mengen [mm] M\cup (N\cap [/mm] M) ergibt... aber wie komme ich dann auf den letzten Teil der Verknüpfung???
vielen dank schonmal

        
Bezug
Mengenverknüpfungen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:22 Di 30.10.2007
Autor: Somebody


> Seien M,N,T Mengen. Zeigen Sie:
>  [mm]M\cap (N\cup M)=M\cup (N\cap M)=M[/mm]
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Ich "wandel" den ersten teil derMengenverknüpfung erstmal
> in aussagen um,

Dieser Weg ist zwar möglich, aber nach meinem Gefühl wohl eher nicht im Sinne des Aufgabenstellers. Ich empfehle Dir eher den Beweis über eine Anwendung folgender Beziehungen zwischen Vereinigung bzw. Durchschnitt und Inklusion für beliebige Mengen $A,B,C$ zu führen:

[mm]A,B\subseteq C\Rightarrow A\cup B\subseteq C[/mm]

[mm]C\subseteq A \Rightarrow C\subseteq A\cup B[/mm]


[mm]C\subseteq A,B \Rightarrow C\subseteq A\cap B[/mm]

[mm]A\subseteq C \Rightarrow A\cap B\subseteq C[/mm]


Diese Beziehungen sind unmittelbar einleuchtend, wenn man sich klar macht, dass [mm] $A\cup [/mm] B$ die kleinste obere Schranke bzw. [mm] $A\cap [/mm] B$ die grösste untere Schranke von $A$ und $B$ bezüglich der Inklusions(partial)ordnung [mm] $\subseteq$ [/mm] ist.

Aufgrund dieser Beziehungen ist z.B. leicht zu sehen, dass [mm] $M\subseteq M\cap (N\cup M)\subseteq [/mm] M$, also insgesamt [mm] $M\cap (N\cup [/mm] M)=M$.
Analog, dass [mm] $M\subseteq M\cup (N\cap M)\subseteq [/mm] M$, also ingesamt wieder [mm] $M\cup (N\cap [/mm] M)=M$.
Damit wäre dann die gesamte Aussage [mm] $M\cap (N\cup M)=M\cup (N\cap [/mm] M)=M$ bewiesen.

Bezug
                
Bezug
Mengenverknüpfungen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:22 Di 30.10.2007
Autor: Betman

alles klar, das leuchtet schon ein...
vielen dank auf jeden fall!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de